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Inducing dynamical bistability by reversible compression of an optical piston
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We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside
an optical piston. The interaction potentials are solved developing a method based on Kramers’s theory that
exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance
of the crossover. We show that the deformation of the optical potentials induced by the compression of the
piston is related to a production of heat balanced between potential energy changes and the total amount of work
performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled
with a high level of precision by tailoring the optical landscapes of the piston.
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I. INTRODUCTION

Optically trapped Brownian particles constitute ideal test
systems for non-equilibrium statistical physics with a great
variety of stochastic protocols under external force fields that
can be implemented [1]. A particular attention has been de-
voted to measuring thermal fluctuation-induced escape over an
optical potential barrier and exploring Kramers’s rate theory,
including the observation of stochastic synchronization [2–5].

More recently, quantitative tests of so-called fluctuation
theorems have involved optically trapped nanoparticles, both
in the over- and underdamped regimes [6–9]. Bistable optical
potentials are currently exploited for developing Szilard-types
engines and studying the connections between information
theory and thermodynamics [10–12].

Despite many such protocols, the study of a dynamical
crossover between stability and bistability has been overlooked
to date. In this article, we monitor, at room temperature, such a
crossover between stable and bistable motions of a thermalized
overdamped Brownian particle optically trapped in front of
a mirror. For specific positions of the mirror, the coherent
superposition of the incident trapping beam and the reflected
beam induces dynamical bistability where the particle is acti-
vated between two distinct positions along the optical axis. We
demonstrate that the whole interaction potential can be solved
by interpreting the two positions as distinguishable metastable
states. Diffusion limited escape rates and associated activation
energies are extracted, together with the actual distance
separating the metastable states. Remarkably, this is performed
without any preliminary spatial calibration of our optical setup.

While the instantaneous position of the particle is a stochas-
tic process, the position of the mirror is an external variable
that controls the optical force field applied to the particle.
We show that the movable mirror acts as an optical piston
that quasistatically injects reversible work into the system
in the form of Helmholtz free energy. From this description,
the energy cost on the Brownian particle associated with the
compression of the piston can be measured precisely. Apart
from an optical potential energy change, some reversible heat is
produced by the deformation of the optical potentials through
the displacement of the piston.

*Corresponding author: genet@unistra.fr

II. EXPERIMENTAL SETUP AND DYNAMICAL
CONFIGURATIONS

In our experiment, a single polystyrene bead is optically
trapped by a focused Gaussian beam in a water cell at a
typical 2 μm distance from a metallic mirror (see details in
Appendix A). The trapping beam, characterized by a fixed
waist w0 located at z = 0, propagates in the fluid along the
z > 0 optical axis with a wave vector +k; see Fig. 1(a). It
is M× magnified through the transparent bead acting as a
lens and reflected with a reflection amplitude r by the mirror
placed at a distance � from w0. This creates a coherent optical
landscape at the position of the bead z measured from the waist
(see Appendix B 1),

I
opt
M (z,�) = ∣∣E+k(z) + rE−k

M (z − 2�)
∣∣2

, (1)

displayed in Fig. 1(b) as a function of z and �. As expected from
its interfering nature, the optical landscape profile changes
with the waist-mirror distance �.

The corresponding evolution has direct consequences on
the dynamics of the trapped bead in the vicinity of the waist.
Although the approach we develop below is fully general,
these consequences are most easily described in a dipolar
approach. Here the nonabsorbing bead is modeled by a real
dipolar polarizability α and the optical interaction potential
is UM (z,�) = −AαI

opt
M (z,�)/(2ε0n2c), with n2 the refractive

index of the fluid (see Appendix B 2). The coupling constant
A allows accounting for bead size effects, with A � 1 beyond
the dipolar limit [13]. Within such an approach, the time-
averaged conservative optical force acting on the bead directly
derive from the potential energy Fopt(z,�) = −∂zUM (z,�)ẑ.
The dipolar approach therefore reveals in a straightforward
way the crucial property that the optical force field is directly
determined from the optical landscape for every choice of �.

Because of the coherent nature of Eq. (1), one dynamical
configuration can be selected from the distribution of the
successive resonant phase conditions in the (z,�) space. For
instance, picking at �1 a resonant phase condition precisely
on the waist as shown in Fig. 1(b) leads to restoring forces
that will maintain the bead in a stable trapped position at
z = 0 as displayed in Fig. 1(c). But a mere decrease of the
waist-mirror distance to �2 brings a bistable configuration
where the resonant phase evolution induces regions of local
stability from both sides of the waist separated by an unstable
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FIG. 1. (Color online) (a) Sketch of the trapping configuration.
A micron-size bead (radius R = 500 nm) is trapped by a Gaussian
beam (λ0 = 785 nm) focused through a microscope objective. The
position of the bead z is defined with respect to the beam waist w0. The
end-mirror is positioned at a distance � from the waist. (b) Evolution
of the optical landscape I

opt
M in the vicinity of the waist (z = 0) and

as a function of � with M taken from Table I. Blue colors (darker
central regions) correspond to regions of higher intensity, i.e., deeper
potential energy and thus to stable positions. The case of a stable
landscape corresponds to the distance �1 (green line, light gray) and
a bistable landscape is crossed at �2 (blue line, dark gray). Force
diagrams associated with �1 stability and �2 bistability are plotted in
panels (c) and (d) respectively.

point at z = 0, as seen in the bistable force diagram Fig. 1(d).
This roots the analogy with a pistonlike action exerted by the
mirror on the Brownian bead, where the walls confining the
bead are of an optical nature.

The stochastic trajectory z(t) of the bead evolves in every
such � configuration, modulating the intensity recollected
by the objective (see Appendix C). The time traces of
these modulations allow us to retrieve the essential features
of the potentials explored by the bead. For the stable �1

configuration of Fig. 1(c), the time trace is displayed in
Fig. 2(a) and corresponds to a Brownian motion performed
in a quasiharmonic potential probed by the bead at the bottom
of the whole optical potential shown in Fig. 2(b); see below.
The corresponding trap stiffness is measured by a power
spectral density (PSD) analysis. At low Reynolds numbers,
this only relies on the determination of the roll-off trapping
frequency and on the knowledge of the fluid friction coefficient
η. Note that we neglect the ∼20% systematic error on the
perpendicular viscosity when working at a 2-μm distance from
the surface [14].

The time trace displayed in Fig. 2(c) corresponds to the
bistable �2 configuration of Fig. 1(d). The intermittency of the
intensity signal between the two distinguishable mean values
is the signature of the activation of the bead between two
metastable positions along the optical axis. There are indeed
clearly two different time scales: a short one associated with
Brownian fluctuations and a much longer one on which take
place activating events from one to the other of these two

FIG. 2. (Color online) Experimental intensity variations IPIN

measured (in volts) by the PIN photodiode respectively associated
with a Brownian motion in a quasiharmonic well (a) and in a bistable
potential between two distant spatial positions (c). The plots (in units
of kBT ) in (b) and (d) are the potentials associated with the time
traces (a) and (c), respectively.

positions. In each metastable states, similar time traces as
those of Fig. 2(a) reveal a quasiharmonic motion, expected
for local equilibrium. Therefore, while the bead performs its
Brownian motion within a local well, it diffuses across the
potential barrier through rare events thermally assisted [15].

III. RESOLVING THE CROSSOVER DYNAMICS

The separation of dynamic time scales and the coherent
nature of the optical landscape that provides a built-in spatial
reference are two sufficient criteria for applying Kramers’s
theory to our problem [16]. In this framework, the interaction
potential of the bead is reconstructed for any length of the
optical piston, without resorting to any position density prob-
ability of the bead along the optical axis that would require an
absolute spatial calibration of the setup. As soon as the process
is stationary with a sufficient number of recorded activating
events – as in our case (see Appendix C), Kramers’ theory
describes escape rates estimated from averaged residency
times τi within each {i = 1,2} well as [17]:

1

τi

=
√

κi

√
κb

2πη
exp

[
−UM (zb,�) − UM (zi,�)

kBT

]
. (2)

Kramers’ theory thus connects residency times τi to (i) local
trap stiffnesses κi = ∂2

z UM (z,�)|zi
that fix the curvature at

the bottom of each well, and to (ii) the actual shape of the
barrier (position zb and height) through the absolute value
of its curvature κb = −∂2

z UM (z,�)|zb
. Taking the ratio of

both rates therefore leads to measuring the potential energy
difference between the local equilibrium positions �U =
UM (z2,�) − UM (z1,�) = kBT ln(τ1/τ2

√
κ1/κ2).

Measured κ1,2 and τ1,2 serve as the input of a nonlinear
system of equations which solution fixes the three (M , �,
A) parameters needed for a definition of the interaction
potential (see Appendix B 3). Experimental values having
their own uncertainty, the precision on �U is better than

042135-2



INDUCING DYNAMICAL BISTABILITY BY REVERSIBLE . . . PHYSICAL REVIEW E 91, 042135 (2015)

TABLE I. Parameters of the interaction potential extracted from the resolution method applied to the bistable �2 configuration. Values
directly obtained experimentally are indicated in brackets. The e notation is taken as a power of 10.

� (μm) M A �z (nm) Ub1 (kbT ) κb (pN/μm) κ1 (pN/μm) κ2 (pN/μm) �U (kbT ) τ1 (s) τ2 (s)

1.811 1.505 2.92e-3 285 2.98 2.81 3.35 (3.12) 3.51 (3.85) −7e-4 (−7e-4) 0.505 (0.526) 0.494 (0.474)

kBT /2 and better than 6 nm for � (see Appendix E). We
also extract from the resolution algorithm the barrier position
zb, inverted curvature κb, and height, measured as Ub1 =
UM (zb,�) − UM (z1,�). The barrier, 3 times higher than kBT ,
is still shallow enough to allow the bead mapping, through
thermal fluctuations, the bistable potential around z = 0. The
distance �z over which the bead is activated is also measured.
From the parameter values gathered in Table I, the interaction
potential profile can be plotted as a function of the bead
displacement as in Fig. 2(d) in units of kBT . We stress that the
phase structure of I

opt
M forbids a simple fourth-order potential

(i.e., Duffing type) (i.e. Duffing type, see Appendix B 1).
Further insight comes from looking at the system from the

point of view of the evolution of configurations controlled by
the external variable �. An incremental change d� of the length
of the piston pushes the bead out of equilibrium. This change
forces the bead to relax in the new � + d� configuration with
a stiffness κ and a fluid friction η on a time tD ∼ κ/η set by
diffusion, typically 10−2 s in our conditions. Hydrodynamic
effects on the bead due to the motion of the mirror can be
neglected since the incremental shift of the mirror by |d�| =
20 nm, performed at a speed of 1 mm/s set for the piezoactuator,
is associated with a low 10−8 Reynolds number. Accordingly,
the displacement of the fluid remains purely diffusive and the
moving piston therefore has no direct mechanical action on the
bead. Under such conditions, the only source of mechanical
loss in the system is given by the relaxation process from one
configuration to the other.

We emphasize that z(t) does not map the entire canonical
equilibrium distribution associated with an � configuration.
It only maps a thermally accessible subset of it that can
be resolved for sufficiently long acquisition times (30 s in
our experiment). The notion of stability then corresponds to
local stable wells much deeper than kBT while bistability
corresponds to local barrier heights of the order of kBT over
which the bead can be activated. In this picture, stable phases
can be identified from bistable phases, as drawn in Fig. 3(a) in
the M-� parameter space.

Our coherent optical piston configuration gives a unique
capacity in monitoring the crossover between these phases.
Indeed, a continuous compression of the piston connecting two
stable configurations forces the bead to go through a whole
phase of bistability, starting for a piston length �i with the
bead in an initial stable position at the incident waist z = 0
and ending for �f < �i with the bead in the very same spatial
position but within a different stable potential. From our
resolution method, the bistable dynamics of the bead can be
solved for each step in �. The (M , �, A) parameters fixing each
potential throughout the bistable phase are extracted and the
actual steps of the entire path followed by the system between
�i and �f can be plotted in the M-� plane. It is worth noting
that the resolved � values follow precisely the mirror actuation

command and that the path shows a small dispersion in M

values, coming from the fact that the lensing effect is slightly
dependent on the position of the bead with respect to the waist.
This small dispersion has an important consequence: Potential
profiles even in the stable phase can be determined from a mere
extrapolation on the variable �. This is done, for instance, for
the stable �1 configuration of Fig. 1 with the measured potential
profile plotted in Fig. 2(b).

As shown in Fig. 3(b), the path can also be represented
through intensity probability densities, associating a well in the
resolved potentials to each probability density extrema. These
plots clearly reveal the progressive onset of a bistable dynamics
of the bead along the optical axis of the setup. As a clear
advantage of our statistical method, this crossover dynamics
can be probed despite the unknown exact relation between
measured intensities and bead positions along the optical axis.

IV. THERMODYNAMIC DESCRIPTION

It is possible to give a thermodynamic description of the
path from an incremental energy balance. Following [18], this
can be drawn from the Langevin overdamped dynamics of the

FIG. 3. (Color online) (a) Regions of stability and bistability in
the �-M parameter space. Experimentally solved bistable configu-
rations are displayed in open circles as � is varied. The points in
the stable region (open squares) are extrapolated from the extreme
bistable points according to the 20 nm piezoactuation. The color
map (gray scale) in the bistable phase codes the asymmetry of the
bistable potential as �U/[UM (z1,�) + UM (z2,�)], positive in red
(darker region) and negative in blue (lighter region). (b) Intensity
probability densities (for 30-s acquisitions) as the mirror distance � is
reduced, crossing over the bistability region between two stable bead
dynamics. The six central bistable plots correspond to the six open
circles plotted in (a).
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bead accounting for the contribution of the piston with

dUM (z,�) = dQ + ∂�UM (z,�)d�, (3)

where dUM (z,�) is the change of the potential energy of
the bead. This change comes from two sources: (i) the heat
balance dQ = ξdz − ηżdz between fluctuation (determined
by a thermal stochastic force ξ ) and friction (related to η) and
(ii) the external work done on the bead by the displacement of
the piston where the external variable � controls the evolution
of the potential configurations.

By waiting much longer than tD between each incremental
change d�, steady state of every new configuration is reached
through mechanical relaxation of the bead. This insures that
the system evolves through the configurations in an isothermal
and quasistatic way. Moreover, all incremental changes in the
optical potential are kept smaller than kBT . This implies that
the bead would go back exploring the same configurations
if the displacement of the piston would be reversed. As a
consequence, the whole path in Fig. 3 is thermodynamically
reversible.

Under such conditions, the averaged external work
is directly related to the Helmholtz free energy with
〈∂�UM (z,�)〉{z}d� = dF (�) [19,20]. The averaging process
being performed over the positions occupied by the bead in
the given configuration, the free energy is only function of the
external variable �. The total amount of work performed by
the piston through the isothermal reversible process is directly
given by the free energy difference between the initial �i and
final �f positions of the piston which can be calculated from
the (�i,�f ) canonical partition functions as

W = F (�f ) − F (�i) = −kBT ln

[
Z(�f )

Z(�i)

]
. (4)

For both initial and final stable configurations, the partition
functions can be expanded to second order around the waist as

Z(�i,f ) � e
− UM (0,�i,f )

kB T

√
2πkBT

κi,f

, (5)

where κi,f = ∂2
z UM (z,�i,f )|z∼0 are the stiffnesses of the (�i,�f )

stable potentials. The total energy balance �UM = W + Qrev,
with

�UM = UM (0,�f ) − UM (0,�i)

Qrev = kBT ln

[√
κi

κf

]
, (6)

connects, along the path, the potential energy change �UM

to the heat Qrev produced by the whole reversible pro-
cess. For the crossover of Fig. 3, �UM= − 2.34×10−21 J
(±3%). As clearly seen, a stiffness difference between the
initial �i and final �f configurations is directly related to the
production of heat. We unambiguously calculate a negative
quantity of reversible heat Qrev = −2.48 × 10−22 J (±10%)
transferred to the fluid by the bead along the path, meaning
that friction dominates over fluctuation as the source of heat
(see Appendix E for the evaluation of the uncertainties). The
negative Qrev value comes from the fact that the bead is
displaced from an initial stable �i configuration to a final �f

one which is optically more confined. From this value, the

actual work injected by the piston in the system (the bead
coupled to the bath) can be evaluated. The fact that Qrev is
small means that the piston is practically working only for
a potential energy change �UM . The small deviation, taken
up by heat, stems from the mechanical deformation of the
interaction potential at both ends of the path which is due to
an increase in the Gaussian optical intensity as the mirror gets
closer to the waist.

V. CONCLUSION

In summary, simply fixed by resonant phase conditions
inside the optical piston, dynamical configurations can be
explored successively by incremental changes in the piston
length. This original scheme has given us the possibility to
monitor precisely the dynamical crossover between stable
and bistable motions of an optically trapped, overdamped
Brownian particle. We have evaluated the energy balance
involved along an isothermal, reversible path connecting two
stable configurations between which, remarkably, the optical
potential energy of the bead can differ. This implies that the
work injected by the piston on the system is shared between
heat production and potential energy changes, both determined
by the optical landscape with a level of control much smaller
than kBT . This connection points to an efficient resource for
designing specific thermodynamic processes.
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APPENDIX A: EXPERIMENTAL SETUP

The optical setup is sketched in Fig. 4. A linearly polarized
TEM00 beam from a cw diode-laser (Excelsior Spectra-
Physics, wavelength λ = 785 nm, power 45 mW) is sent
into a dry objective (Nikon CFI Plan Fluor 60×, 0.85 NA)
and focused in a water cell (deionized water, 80 μm
thick) enclosing monodispersed dielectric polystyrene beads

FIG. 4. (Color online) Schematics of the experimental setup,
indicating in particular the secondary isolation stage at the level of the
polarizing beam splitter (PBS) and the added quarter-wave plate λ/4.
The two ports from the nonpolarizing beam splitter (NPBS) used for
recording the recollected beam are also shown. In the chosen frame,
a right-handed circularly polarized field propagating along the z > 0
direction is described with σ+ = (x̂ − iŷ)/

√
2.
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(Thermoscientific Fluoro-Max Red Dyed, refractive index
1.58) of radius 500 nm. The cell is topped by a 170-μm-thick
cover slip. Spherical aberrations are compensated by the
objective (correction ring set to 0.2 mm).

The laser beam traps a single bead in the vicinity of a
movable mirror (300-nm-thick evaporated gold film on a glass
substrate) with a measured optical power of 3 mW at the
waist. The beam is reflected by the mirror and recollected by
the objective. It is sent to a nonpolarizing cube beamsplitter
where it is equally divided. One arm of the intensity signal
is vignetted by a pin-hole and recorded by a PIN photodiode
(Thorlabs Det10A). Amplified before numerical conversion
and acquisition (NI PCI-6251, 16 bits resolution), this port
provides intensity time traces that measure the axial displace-
ment z(t) of the bead inside the optical trap. The second port is
sent to a charge-coupled device (CCD) camera (Allied Guppy
Pro F-031) that images the recollected beam spot.

We took care to isolate optically the cw diode laser, using
a free-space Faraday isolator (Thorlabs IO-5-NIR-LP). The
isolation is further improved by injecting the laser beam into
the objective using a polarizing cube beamsplitter coupled to
a quarter-wave plate. This prevents as much as possible the
recollected signal to be send back to the injection port.

APPENDIX B: SOLVING THE INTERACTION POTENTIAL

1. Optical fields

The optical field Etot created inside the optical piston (i.e.,
between the objective lens and the mirror) is given by the
coherent superposition of an incident and a reflected Gaussian
beam. The incident beam is, as explained above, right-handed
σ+ circularly polarized and described by its Rayleigh range
zR and its waist w0 position fixed at z = 0

E+k(z) = E00
w0

w(z; zR)
exp [ikz − iξ (z; zR)] σ+ (B1)

with

w(z; zR) = w0

√
1 +

(
z

zR

)2

(B2)

ξ (z; zR) = arctan

(
z

zR

)
(B3)

and zR = πw2
0/λ, n2λ = λ0, the optical wavelength in water

(refractive index n2) and πw0 = λ/NA.
The reflected field, counterpropagating k → −k with re-

spect to the incident beam, is multiplied by a reflectivity
coefficient r(λ). Its waist position is the mirror image of
the incident waist position. But before being reflected, the
incident beam is intercepted by the bead because the bead
diameter is larger than the incident waist w0. Considering that
the refractive index of the bead (polystyrene) differs from that
of the fluid (water), the incident beam transmitted through
the bead is magnified, the bead considered to act as a lens
doublet. We account of this effect by introducing an effective
magnification parameter M on the reflected beam itself. This
leads to changing the Rayleigh range zR → M2zR and waist
w0 → Mw0 of the reflected beam with respect to the incident
beam. The reflected beam, left-handed σ− circularly polarized,

is then expressed as:

E−k
M (z − 2�) = E00

Mw0

w(z; M2zR)
exp[−ik(z − 2�)

+ iξ (z − 2�; M2zR)]σ−. (B4)

The coherent superposition of the incident and the magni-
fied reflected Gaussian beams determines the optical landscape
of the problem. The corresponding optical intensity writes as:

I
opt
M (z,�) = ∣∣E+k(z) + r[λ]E−k

M (z − 2�)
∣∣2

= E2
00

w2
0

w2(z; zR)
+ ρ2E2

00

w2
0

w2(z − 2�; M2zR)

+ 2ρE2
00Mw2

0

w(z; zR)w(z − 2�; M2zR)

× cos[2k(z − �)−ξ (z; zR)−ξ (z−2�; M2zR)+ψ].

(B5)

The last term of the right-hand side of the equation corresponds
to the interference between the two beams. In the vicinity
of the waist, it shows that the modulations of the optical
landscape (that will eventually, as discussed below, correspond
to the local potential barriers) are determined from a harmonic
term. This immediately stresses that a standard fourth-order
polynomial description of the barrier – as done with a typical
Duffing model – is not appropriate for our optical piston
configuration.

2. Conservative optical force

In the dipolar regime, the bead is characterized by an electric
polarizability α. Neglecting any source of dissipation within
the bead, i.e., assuming that Im[α] ∼ 0, the gradient force is
the only force exerted on the bead

Fopt = −∂zUM (z,�)ẑ. (B6)

It directly derives from the interaction potential energy
determined from the optical landscape intensity as

UM (z,�) = −A
α

2ε0n2c
Iopt(d,z) (B7)

with α = 4πε0n
2
2a

3[(n1/n2)2 − 1]/[(n1/n2)2 + 2], n1 the re-
fractive index of the bead, n2 the refractive index of the fluid,
a the radius of the bead, and ε0 the vacuum permittivity.

Despite the fact that it is related to the bead geometry,
the M parameter value for the magnification by the bead is
not necessarily a constant of the model as it depends on the
width of the beam intercepted by the bead. The A parameter
quantitatively corrects the value of the potential calculated
in our Rayleigh-based model due the finite size of the bead
that should be accounted for in a more realistic description of
the optical interaction. In fact, as given in the main text, the
interaction potential turns out to be smaller by approximately
3 orders of magnitude for a 1-μm bead. This value is in good
agreement with existing evaluations for the size effect [13].
We stress that because A is a parameter of the model that
characterizes the intensity of the coupling of the bead with the
optical intensity, it is kept fixed once determined for a given
bead.
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3. System resolution

By monitoring the instantaneous motion I [z(t)] of the bead
in the bistable phase, mean residency times τ1,2 and stiffnesses
κ1,2 are extracted from experimental intensity time traces for
each well. Kramers’s rate equations provide the following
system fed with the extracted values:

∂2
z UM (z,�)

∣∣
z=z1

= κ1, (B8)

∂2
z UM (z,�)

∣∣
z=z2

= κ2, (B9)
√

κ1
√

κb

2πη
exp

[
−UM (zb,�) − UM (z1,�)

kBT

]
= 1

τ1
, (B10)

√
κ2

√
κb

2πη
exp

[
−UM (zb,�) − UM (z2,�)

kBT

]
= 1

τ2
, (B11)

where Eqs. (B10) and (B11) are escape equations given by
Kramers’s theory in the overdamped regime for each of the
metastable states of the bistable phase. Resolution of this
system gives access to the remaining unknown quantities of
our model: the mirror waist distance �, the bead magnification
effect M , and the size correction parameter A related to the
coupling between the light field and the finite-size bead.

The energy difference between the two metastable wells can
be derived from the extracted residency times and stiffnesses
as �U = kBT ln

(
τ1
τ2

√
κ1
κ2

)
. Taking the ratio of Eqs. (B10)

and (B11) then removes the dependency of the system on
the properties of the barrier but requires the knowledge of
A. Fixing A and using the simplex algorithm, the external
variable � (piston length) and the magnification parameter
M are determined. This therefore gives the entire potential
UM (z,�) for a given A. Iterating this resolution over A until
the rate equations are verified provides the triplet (�,M,A)
that best solves the whole system. Once determined in one �

configuration (say, the symmetric bistable configuration), the
parameter A is then kept constant when solving other bistable
configurations (for instance, varying �).

APPENDIX C: AXIAL DISPLACEMENT

The bistable behavior of the bead can be monitored on
the CCD camera because the motion of the bead along
the optical axis and across the bistability barrier changes
the Gaussian envelope of the reflected beam and thus the
diffraction pattern of the recollected beam imaged on the
camera, as shown in Fig. 5. Thus, by the sole measurement
of the recollected intensity, one can access part of the bead
dynamics. Nevertheless, the low acquisition rate of the CCD
camera is a strong limitation for analyzing precisely the
stochastic motion of the bead.

To do so, we measure the recollected intensity using a
PIN photodiode that grants a better sensitivity and a high
acquisition rate. We set this rate for our experiments at
218 = 262 144 Hz using low-noise preamplifiers (SR560). The
PIN signal for intensity measurements was recorded in ac
mode thus filtered through a 0.3-Hz high-pass filter at 6 dB/oct
to remove the continuous component of the signal. High-pass
filtering poses no issue since we focus on signal fluctuations
while it allows, after amplification, to span the signal of
interest over the whole acquisition card input range. For the

FIG. 5. (Color online) Recollected spots imaged on the CCD
camera in the case of a bead trapped in a bistable configuration
with the same exposition time. Panel (a) shows the bead in its most
distant position from the mirror, i.e., the position behind the waist
(z < 0). Panel (b) shows the bead in front of the waist, thus closer to
the mirror. Both images have been recorded with the same exposure
time. The recollected intensity is higher near the mirror [image (b)]
than away from it. The central area of the recollected spot is indicated
by the superimposed circles, with a 44-pixel diameter for (a) and
50 for (b).

slow-varying signals, the exponential decrease coming from
the high-pass filter is later compensated numerically to within
a constant. A low-pass filter at 100 kHz at 6 dB/oct was also
used to avoid aliasing.

Time traces measured by the PIN photodiode clearly reveal
the bistable dynamics of the bead as shown in Fig. 6. The
intensity time trace is distributed around two mean values from
which we extract and concatenate the dynamics associated
with each well of the bistable potential, as shown in Fig. 7.
The full signal dynamics clearly appears stationary: The signal
stays centered around a constant value (near 0) and the ratios
between the mean residency times for each mean value is time
independent. Similarly, the two concatenated time traces reveal
stationarity properties.

In the experiment, we spatially filtered the recollected beam
before the PIN photodiode through a pinhole (typical aperture
of about 1 mm2). This filtering was useful since it actually

FIG. 6. (Color online) Time trace associated with a bistable
motion of the bead as recorded by the PIN photodiode on the reflected
beam intensity. The acquisition time is set to 60 s at a rate of 262 kHz.

042135-6



INDUCING DYNAMICAL BISTABILITY BY REVERSIBLE . . . PHYSICAL REVIEW E 91, 042135 (2015)

FIG. 7. (Color online) Concatenated time traces associated with
each of the mean values measured in the time trace of Fig. 6. The
light grey trace corresponds to IPIN(V ) > 0 and the dark grey trace to
IPIN(V ) < 0 displayed in Fig. 6.

enhanced the separation between the two average intensities
in the bistable configurations.

FIG. 8. (Color online) PSD taken on each of the concatenated
time traces given in Fig. 7. The PSD calculated for the IPIN(V ) > 0
concatenated time trace is shown in panel (a) and the PSD of the
concatenated time trace when the bead is in the well further away
from the mirror [corresponding to IPIN(V ) < 0] is shown in panel
(b). In both panels, the black solid line is the Lorentzian fit of the
data and the vertical line gives the roll-off frequency of each of the
quasiharmonic trap associated with each locally stable positions.

FIG. 9. (Color online) PSD taken directly from the full time trace
shown in Fig. 6 for an acquisition time of a minute. The lower PSD
(light gray) corresponds to the experimental laser noise.

APPENDIX D: POWER SPECTRAL DENSITY

Assuming that the recorded stationary intensity time traces
are ergodic, meaning that a time trace is independent of the
initial position of the bead and leads to the same distribution
for different realizations with identical parameters, one can
study the bead dynamics through its power spectral density
(PSD) [21]. This standard approach has the advantage of being
straightforward to apply on rapidly fluctuating data.

It clearly appears that the PSDs associated with each of the
concatenated time traces of Fig. 7 follow the typical Lorentzian
shape of a Brownian motion performed in a harmonic trap in
the overdamped regime, as seen in Fig. 8. This implies that the
two wells of the bistable potential, separated by the activation
barrier, are quasiharmonic, with stiffnesses κ1,2 = 2π η f1,2

that can be determined directly from the fluid drag η and
the so-called roll-off frequency f1,2 of the trap measured on
each PSD [22]. In the full signal PSD shown in Fig. 9, these
quasiharmonic traps are seen through the Lorentzian fit at high
frequencies. But the spectrum within these local wells does
not exhaust the bistable dynamics. Low frequencies indeed
reveal a strong increase in the power spectrum which is due
to the activation process of the bead over the bistable barrier,
occurring on a typical ∼1-Hz regime. In other words, the
crucial separation of time scales discussed in the main text
is readily observed on the PSD associated with the bistable
motion of the bead.

APPENDIX E: EXPERIMENTAL UNCERTAINTIES

We assume that the distribution of the measured residency
times are Poissonian, implying that their mean values τ1,2

equal their variances στ1,2 . Measuring N = 25 number of
back-and-forth activations of the bead through the barrier (over
an acquisition time of T = 30 s) for the bistable configurations
described in the main text leads to an experimental uncertainty
in the τ1,2 determination of δτ1,2 = στ1,2/

√
N = 0.2 στ1,2 .

Because the signal is stationary, τ1 + τ2 = T
N

and therefore
τ2 = T

N
− τ1.

In addition, by taking the expression of the perpendicular
viscosity [14] and its derivative, and neglecting the systematic
error in the region where the bead evolves, the uncertainty in
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the change of viscosity along the displacement of the bead can be estimated at a 3% level over 300-nm bed displacement.
To this uncertainty, 1% is added from the extraction of the roll-off frequency at the level of the PSD (fit uncertainty). This
thus leads to a global stiffness uncertainty of about δκ1,2 = 0.04 κ1,2.

The six resolved M values have mean and sample deviation, respectively, of M = 1.508 and σM = 0.071. The uncertainty
therefore is δM = σM/

√
6 = 0.029 and M = M ± δM = 1.508 ± 0.029, which is an uncertainty of 4% of the value.

These uncertainties are propagated [23] to determine the uncertainty on �U used as an input (through κ1,2 and τ1,2) in our
system solver. Propagations of δτ1 and δκ1,2 in �U in bistable configurations where τ1 ∼ τ2 lead to

δ�U = kBT

√(
∂�U

∂τ1

)2

(δτ1)2 +
(

∂�U

∂κ1

)2

(δκ1)2 +
(

∂�U

∂κ2

)2

(δκ2)2

� kBT

√
(0.2)2

(
1 + τ 2

1

τ 2
2

+ 2
τ1

τ2

)
+

(
0.04

2

)2

+
(

0.04

2

)2

� 0.4 kBT . (E1)

Because the propagation of uncertainties is logarithmic for
δ�U , resolution of energy differences between the two well
is lower than half a kBT despite the uncertainty on average
lifetimes.

Taking M = M (given the small δM value) allows us
computing the sensitivity of �U as a function of �. The
computation yields ∂�U/∂� = 0.07 kBT nm−1. Combining
this sensitivity with the uncertainty δ�U of 0.4 kBT gives an
uncertainty on the waist-mirror position δ� of 6 nm only. This
rather high spatial resolution is an interesting by-product of
our approach.

The reversible heat measured with our method on our
experimental configuration through the crossover path (see

main text) is computed from trap stiffnesses which depend
on the waist-mirror distance �. The measured heat uncer-
tainty δQrev produced along the path is thus estimated from
the determination of δ�. The trap stiffness of the stable
positions (around z = 0) is computed for an incremental
displacement of � of ±δ�. A worst-case scenario is then
followed, taking the highest differences in trap stiffnesses
between κ(�) and κ(� + δ�). The heat uncertainty can
then be computed as δQrev = |kBT ln[

√
κ(�)/κ(� + δ�)]| �

2.2×10−23 J with κ(�) = 6.47×10−6 N m−1 and κ(� + δ�) =
6.40×10−6 N m−1. Similarly, the worse-case uncertainty for
the potential energy δ�UM = UM (0,� + δ�) − UM (0,�) is
determined and is about 6×10−23 J.
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