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ABSTRACT: We investigate light−matter coupling in metallic
crystals where plasmons coexist with phonons exhibiting large
oscillator strength. We demonstrate theoretically that this coexistence
can lead to strong light−matter interactions without external
resonators. When the frequencies of plasmons and phonons are
comparable, hybridization of these collective matter modes occurs in
the crystal. We show that the coupling of these modes to photonic
degrees of freedom gives rise to intrinsic surface plasmon−phonon
polaritons, which offer the unique possibility to control the phonon
properties by tuning the electron density and the crystal thickness. In
particular, dressed phonons with reduced frequency and large wave
vectors arise in the case of quasi-2D crystals, which could lead to large
enhancements of the electron−phonon scattering in the vibrational ultrastrong coupling regime. This suggests that photons can
play a key role in determining the quantum properties of certain materials. A nonperturbative self-consistent Hamiltonian
method is presented that is valid for arbitrarily large coupling strengths.
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Using light to shape the properties of quantum materials is
a long-standing goal in physics, which is still attracting

much attention.1−3 Since the 1960s, it is known that
superconductivity can be stimulated via an amplification of
the gap induced by an external electromagnetic radiation.4,5

Ultrafast pump−probe techniques have been recently used to
control the phases of materials such as magnetoresistive
manganites,6 layered high-temperature superconductors,7 and
alkali-doped fullerenes,8 by tuning to a specific mid-infrared
molecular vibration. It is an interesting question whether the
phases of quantum materials may also be passively modified by
strong light−matter interactions in the steady state, without
external radiation. Recently, the possibility of modifying
superconductivity by coupling a vibrational mode to the
vacuum field of a cavity-type structure has been suggested.9

This idea was then investigated theoretically in the case of an
FeSe/SrTiO3 superconducting heterostructure embedded in a
Fabry−Perot cavity.10 In this work, enhanced superconductiv-
ity relies, however, on unrealistically large values of the
phonon−photon coupling strength, in a regime where light
and matter degrees of freedom totally decouple.11 This occurs
beyond the ultrastrong coupling regime, which is defined when
the light−matter coupling strength reaches a few tens of
percents of the relevant transition frequency.12−14

Thanks to the confinement of light below the diffraction
limit,15 an alternative approach to engineer strong16−26 and
even ultrastrong light−matter coupling27−29 is the use of

plasmonic resonators. The latter allow the propagation of
tightly confined surface plasmon polaritons (SPPs), which are
evanescent waves originating from the coupling between light
and collective electronic modes in metals, called plasmons.30

Similarly, the collective coupling between light and vibrations
of ions in solids gives rise to surface phonon polaritons. While
suitable quantized theories to describe the ultrastrong coupling
between SPPs or surface phonon polaritons and other
quantum emitters such as excitons have been already
reported,31,32 most quantized models used in the liter-
ature24,33,34 are not valid in this regime.
Strong coupling between SPPs in a 2D material and surface

phonons of the substrate has stimulated considerable
interest.35−40 While significant couplings cannot generally
occur in the same crystal due to the screening of the ion
charges by free electrons, exceptions have been recently
reported considering surface phonons in InP or SiC nano-
crystals coupled to photoexcited carriers.41 Other exceptions
exist as a result of a transfer of oscillator strength from
interband electronic transitions to the lattice. These include
bilayer graphene,42 alkali fullerides A6C60,

43,44 organic
conductors (e.g., K−TCNQ45−47), and some transition metal
compounds.48 Interestingly, some of these materials or similar
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compounds feature superconductivity and charge density
waves under certain conditions that are believed to be driven,
at least partly, by electron−phonon scattering.49−53 Since the
coexistence of collective electronic and ionic modes with large
oscillator strength in the same crystal opens up the possibility
to tune bulk phonon resonances,42,54 it is interesting to ask
whether strong light−matter interactions between phonons,
plasmons, and photons could occur in these materials in the
absence of an external resonator, and if so, can this affect the
electron−phonon scattering.
In this work, we propose and investigate the possibility to

tune material properties of certain crystals via a hybridization
of phonons, plasmons, and photons, which is intrinsic to the
material, and without the use of an external resonator. The
coexistence of plasmons and phonons within the same crystal
gives rise to hybrid plasmon−phonon modes, which have been
extensively studied in doped semiconductors and semi-
metals.55−59 Here, we show that while hybrid plasmon−
phonon modes do not affect the electron−phonon scattering at
the level of the random phase approximation, strong
interactions between these modes and photons offer a unique
possibility to control the energy and momentum of the
resulting surface plasmon−phonon polaritons by tuning the
electron density and the crystal thickness: “Dressed” phonons
with reduced frequency arise in the ultrastrong coupling
regime, where the electronic and ionic plasma frequencies
become comparable to the phonon frequency. These dressed
phonons are shown to exhibit unusually large momenta
comparable to the Fermi wave vector in the case of quasi-2D
crystals, which could lead to large enhancements of the
electron−phonon scattering. Simply put, such enhancements
are significant only for thin enough crystals, as they rely on the
dressing of 3D phonon modes by 2D surface polaritons. These
results suggest that photons can play a key role in determining
the quantum properties of certain materials.
We utilize a self-consistent Hamiltonian method based on a

generalization of that introduced in ref 60, which is valid for all
regimes of interactions including the ultrastrong coupling
regime, and in the absence of dissipation. This quantum
description of surface plasmon−phonon polaritons provides an
ideal framework to investigate how the latter can affect the
quantum properties of the crystal. Furthermore, our method
can be generalized to various surrounding media and
geometries of interest such as layered metallo-dielectric
metamaterials and simple nanostructures and differs from the
usual effective quantum description of strong coupling between
excitons and quantized SPPs.24,33,34 We show in the
Supporting Information that the latter model leads to
unphysical behaviors in the ultrastrong coupling regime.
The paper is organized as follows: (i) We first introduce the

total Hamiltonian of the system under consideration and (ii)
diagonalize the matter part leading to plasmon−phonon
hybridization in the crystal. (iii) We derive the coupling
Hamiltonian of these hybrid modes to photonic degrees of
freedom, which gives rise to intrinsic surface plasmon−phonon
polaritons. (iv) We determine the Hamiltonian parameter and
its eigenvalues self-consistently using the Helmoltz equation
and characterize the properties of the resulting surface
plasmon−phonon polaritons. (v) We show that while
plasmon−phonon hybridization cannot solely modify the
electron−phonon scattering at the level of the random phase
approximation (RPA), the coupling of these hybrid modes to

photons could lead to large enhancements of the electron−
phonon scattering in the crystal.

■ QUANTUM HAMILTONIAN
We consider a metallic crystal of surface S and thickness l in
air, which contains a free electron gas and a transverse optical
phonon mode with frequency ω0. The excitation spectrum of
the electron gas features a collective, long-wavelength plasmon
mode with plasma frequency ωpl, as well as a continuum of
individual excitations called electronic dark modes that are
orthogonal to the plasmon mode. Both plasmons and phonons
are polarized in the directions uz and u∥ (Figure 1). The

Hamiltonian is derived in the Power−Zienau−Woolley
representation,61 which ensures proper inclusion of all
photon-mediated dipole−dipole interactions and can be
decomposed as H = Hpol + Hel−pn with Hpol = Hpt + Hmat−pt
+ H m a t . T h e fi r s t t e r m i n H p o l r e a d s
H d dRD R RH R( ) ( )pt c

1
2

2 1
2

2
0 0

2∫ ∫= +ϵ ϵ
and corresponds to

the photon Hamiltonian. c denotes the speed of light in
vacuum, R ≡ (r, z) the 3D position, ϵ0 is the vacuum
permittivity, and D and H are the displacement and magnetic
fields, respectively. The light−matter coupling term reads
H dRP R D R( ) ( )mat pt

1

0
∫= − ·− ϵ . Here, P = Ppl + Ppn denotes

the matter polarization field associated with the dipole moment
density, where Ppl and Ppn correspond respectively to the
plasmon and phonon contributions. [Our method can be easily
generalized when phonons are replaced by excitons, by
considering the appropriate polarization field.] The matter
Hamiltonian is decomposed as Hmat = Hpn + Hpl + HP

2, where
Hpn and Hpl denote the contributions of free phonons and
plasmons, which are provided in the Supporting Information,
and H dRP R( )P

1
2

2
2

0
∫= ϵ

contains terms ∝ Ppl
2 , Pph

2 , and a

direct plasmon−phonon interaction ∝Ppl·Pph. Finally, Hel−pn
includes the contribution of the free, individual electrons
(electronic dark modes), as well as the coupling Hamiltonian
between electronic dark modes and phonons.

■ DIAGONALIZATION OF THE MATTER
HAMILTONIAN

Hybrid plasmon−phonon modes have been extensively studied
in doped semiconductors and semimetals.55−59 In this section,

Figure 1. Intrinsic surface plasmon−phonon polaritons: Metal of
thickness l in air featuring a plasmon mode with frequency ωpl (gray
dashed line) and an optical phonon mode with frequency ω0 (green
dashed line). Both plasmons and phonons are polarized in the
directions uz and u∥. When νpn ≠ 0 and ωpl ≈ ω0, the matter
Hamiltonian Hmat provides two hybrid plasmon−phonon modes with
frequencies ω̃1 and ω̃2 [eq 1] represented as a function of ωpl/ω0 for
νpn = 0.5ω0. The surface polaritons generated by the coupling of these
modes to light propagate along the two metal−dielectric interfaces
with in-plane wave vector q.
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we propose a derivation of these hybrid modes using a
nonperturbative quantum method. In order to diagonalize
Hmat, the phonon polarization Ppn is written in terms of the
bosonic phonon annihilation and creation operators BQ,α and
BQ,α
† , with the 3D wave vector Q ≡ (q, qz) and α = ∥, z the

polarization index. The lattice polarization field Ppn is

proportional to the ion plasma frequency N
M apn

2

0
3ν =

ϵ
,

which plays the role of the phonon−photon coupling
strength.62 Here, N denotes the number of vibrating ions
with effective mass M and charge in a unit cell of volume a3.
The plasmon polarization Ppl is provided by the dipolar
description of the free electron gas corresponding to that of the
RPA.60 In the long-wavelength regime, Ppl is written in terms
of the bosonic plasmon operators PKQ and PKQ

† (K denotes the
3D electron wave vector), superpositions of electron−hole
excitations with wave vector Q across the Fermi surface. As
explained in the Supporting Information, Hmat can be put in
the diagonal form Hmat = ∑Q,α,j=1,2ℏω̃jΠQjα

† ΠQjα, where the
hybrid plasmon−phonon operators ΠQjα are superpositions of
BQ,α, PKQ, and their Hermitian conjugates, and satisfy the
bosonic commutation relations [ΠQjα, ΠQ′j′α′

† ] = δQ,Q′δj,j′δα,α′.
The hybrid mode frequencies ω̃j are represented in Figure 1
and are given by

2 ( ) 4j
2

0
2

pl
2

0
2

pl
2 2

pn
2

pl
2ω ω ω ω ω ν ω̃ = ̃ + ± ̃ − + (1)

Here, j = 1 and j = 2 refer respectively to the signs − and +,
and the longitudinal phonon mode with frequency

0 0
2

pn
2ω ω ν̃ = + is determined by the combination of the

short-range restoring force related to the transverse phonon
resonance, and the long-range Coulomb force associated with
the ion plasma frequency. The diagonalization procedure of
Hmat further provides the well-known transverse dielectric
function of the crystal:55

( ) 1cr
pl
2

2
pn
2

2
0
2ω

ω

ω

ν

ω ω
ϵ = − −

− (2)

One can then use the eigenmodes basis of the matter
Hamiltonian to express the total polarization field as

g
V

P R u( )
2

( )e
j

j
j

j j
i

Q
Q Q

Q R

, ,

0 pl
2

∑
ω

ω
=

ℏϵ
̃

Π + Π
α

α α α−
† − ·

(3)

with

g
(1 / )

( )j
j

j j j j

2
pn
2

pl
2

0
2

2 2
pl
4

4
pn
2

pl
2

2
0
2 2

ω ν ω ω

ω ω

ω

ω

ν ω

ω ω
=

̃ + −

̃ − ̃ ̃
+

̃ −′

j′ ≠ j, and V Sl= . In the absence of phonon−photon coupling
(νpn = 0), the two modes j = 1, 2 reduce to the bare phonon
and plasmon. A similar situation occurs for νpn ≠ 0, in the case
of large plasmon−phonon detunings. Both in the high ωpl ≫
ω0 and low ωpl ≪ ω0 electron density regimes, the hybrid
modes reduce to the bare plasmon and phonon excitations,
and the plasmon contribution prevails in the polarization field
eq 3. As explained in the following, when the latter interacts
with the photonic displacement field D, this simply results in
the formation of SPPs coexisting with bare phonons. The latter
are either transverse phonons with frequency ω0 for ωpl ≫ ω0
or longitudinal phonons with frequency ω̃0 in the case ωpl ≪

ω0 (Figure 1). In the following, we focus on the most
interesting case occurring close to the resonance ωpl ≈ ω0,
where plasmon−phonon hybridization occurs.

■ COUPLING TO PHOTONS
Due to the breaking of translational invariance in the z
direction, the 3D photon wave vector can be split into an in-
plane and a transverse component in each media as Q = qu∥ +
iγnuz, where n = d, cr refers to the dielectric medium and the
crystal, respectively. For a given interface lying at the height z0,
the electromagnetic field associated with surface waves decays
exponentially on both sides as e±γn(z − z0) with the (real)
penetration depth γn. The displacement and magnetic fields
can be written as superpositions of the fields generated by each
interfaces m = 1, 2, namely,

c
S

z DD R u( )
4

e ( )
m

i
m m

q

q r
q q

,

0∑=
ϵ ℏ ·

and

w
c

S
z HH R v( )

4
e ( )

m
q

i
m m

q

q r
q q

,

0∑=
ϵ ℏ ·

with wq the frequency of the surface waves (still undetermined)
and q ≡ |q|. The mode profile functions uqm(z) and vqm(z)
depending on γn are provided in the Supporting Information.
Using these expressions, the photon Hamiltonian takes the
form

H c D D H H( )
m m

q
mm

m m q
mm

m m
q

q q q qpt
, ,

∑= ℏ +
′

′
− ′

′
− ′

where the overlap matrix elements q
mm′ and q

mm′ depend on
the parameters γcr and γd. The next step corresponds to finding
the electromagnetic field eigenmodes, which consist of a
symmetric and an antisymmetric mode, such that the photon
Hamiltonian can be put in the diagonal form:

H c D D H H( )q q
q

q q q qpt
,

∑ α β= ℏ +
σ

σ σ σ σ σ σ
=±

− −

w i t h q q q
11 12α = ±± , q q q

11 12β = ±± ,

D D D( )/ 2q q q2 1= ±± , and a similar expression for Hq±.
The new field operators Dqσ and Hqσ satisfy the commutation
relations [Dqσ, Hq′σ′

† ] = −iCqσδq,q′δσ,σ′, together with the
properties Dqσ

† = D−qσ and Hqσ
† = H−qσ. The constant Cqσ is

determined using the Amper̀e’s circuital law, which provides

Cq
w

c2
q

q
=σ β σ

.60

The light−matter coupling Hamiltonian Hmat−pt is derived
using the expression of D(R) in the new basis together with eq
3. While q is a good quantum number due to the in-plane
translational invariance, the perpendicular wave vector of the
3D matter modes qz is not. In the light−matter coupling
Hamiltonian Hmat−pt, photon modes with a given q interact
with linear superpositions of the 3D matter modes exhibiting
different qz. The latter are denoted as quasi-2D “bright” modes
and are defined as πqσj = ∑qz,α fασ(Q)ΠQjα, where fασ(Q) stem
from the overlap between the displacement and the polar-
ization fields and is determined by imposing the commutation
relations [πqσj, πq′σ′j′

† ] = δq,q′δσ,σ′δj,j′.
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Using a unitary transformation,62 the matter Hamiltonian
can be decomposed as Hmat = ∑q,σ,jℏω̃jπqσj

† πqσj + Hdark, where
the second term is the contribution of the “dark” modes that
are orthogonal to the bright ones and which do not interact with
photons. Without this contribution, the polariton Hamiltonian
reads H q qpol ,= ∑ σ σ with

c D D H H

D

( )

( )

q q
j

j j j

j
q j j j

q q q q q q q

q q q

∑

∑

α β ωπ π

π π

= ℏ + + ℏ ̃

− ℏΩ +

σ σ σ σ σ σ σ σ σ

σ σ σ σ

− −
†

−
†

and the vacuum Rabi frequency

g
c

q
l q(1 e ) 2 e ( )

q j j
j

l l

pl
2

2
cr
2

cr

2 2
cr
2

cr cr

ω
ω

γ
γ

σ γ

Ω =
̃

×
+

− + −

σ

γ− −γ

■ SURFACE PLASMON−PHONON POLARITONS
The Hamiltonian Hpol exhibits three eigenvalues in each
subspace (q, σ), and only the lowest two (referred to as lower
and upper polaritons) correspond to surface modes (below the
light cone). At this point, we have built a Hamiltonian theory
providing a relation between the field penetration depths γn
and the surface wave frequencies wqσζ, where ζ = LP, UP refers
to the lower (LP) and upper (UP) polaritons. This eigenvalue

equation can be combined with the Helmholtz equation
ϵn(ω)ω

2/c2 = q2 − γn
2 in order to determine these parameters.60

We use a self-consistent algorithm which starts with a given
frequency wqσLP, then determine γn from the Helmholtz
equation with ϵd = 1 and ϵcr(wqσLP) given by eq 2 and use
these γn to compute the parameters entering the Hamiltonian
Hpol. The latter is diagonalized numerically,62 which allows
determining the new wqσLP. The algorithm is applied
independently for the symmetric (σ = +) and antisymmetric
(σ = −) modes until convergence, which is ensured by the
discontinuity of both light and matter fields at each interface.60

We now use this method to study the surface polaritons in
our system. As an example, we consider the case ωpl = 1.5ω0

with different crystal thickness q l 100 = (Figure 2a) and
q l 0.010 = (Figure 2b) and compute the surface polariton
frequencies wqσζ (top panels), as well as their phonon (i = pn),
plasmon (i = pl), and photon (i = pt) admixtures Wi,qσ

LP for νpn
= 0 and νpn = 0.5ω0 (bottom panels). Precise definitions of
these quantities are provided in the Supporting Information,
and l and q are both normalized to q0 = ω0/c. Considering
typical mid-infrared phonons with ℏω0 = 0.2 eV, the two
dimensionless parameters q l 100 = and q l 0.010 = correspond
to l 10 mμ= (first case) and l 10 nm≈ (second case),
respectively.
In the first case (Figure 2a), the two surface modes at each

interface have negligible overlap, and the modes σ± therefore
coincide. For νpn = 0, the plasmon−photon coupling is
responsible for the appearance of an SPP mode (black line)
with frequency wq

0, which enters in resonance with the phonon

Figure 2. Normalized frequency dispersion wqσζ/ω0 and mode admixtures of the surface polaritons as a function of q/q0 for ωpl = 1.5ω0. (a)
q l 100 = . (b) q l 0.010 = . Top panels: The SPPs obtained for νpn = 0 are depicted as black lines, while the surface lower and upper polaritons
obtained for νpn = 0.5ω0 are represented as thick red and blue lines, respectively. Resonance between SPPs and phonons (horizontal dotted lines) is
indicated by thin vertical lines. The antisymmetric (σ = −) and symmetric (σ = +) modes correspond to the solid and dashed lines, and the light
cone with boundary ω = qc is represented as a gray-shaded region. Inset: Frequency wqσζ/ω0 of the lower (red line) and upper (blue line) surface
polaritons versus νpn/ω0 for q l 100 = and ωpl = 1.5ω0. The phonon frequency is depicted as a horizontal dotted line. Bottom panels: Plasmon (gray
dashed lines), photon (magenta solid lines), and phonon (green dotted lines) admixtures of the antisymmetric lower polariton Wi,qσ = −

LP (i = pl, pt,
pn) as a function of q/q0 for ωpl = 1.5ω0. The top and bottom subpanels correspond to νpn = 0 and νpn = 0.5ω0, respectively.
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mode at qr ≈ 2.2q0. While for q ≪ q0 this SPP is mainly
composed of light (wq

0 ∼ qc), it features a hybrid plasmon−
photon character for q ∼ q0 and becomes mostly plasmon-like
as wq

0 approaches the surface plasmon frequency / 2plω for q
≫ q0. For νpn ≠ 0, a splitting between the two polaritons
branches (thick red and blue lines) is clearly visible, and the
latter consist of a mix between phonons, plasmons, and
photons in the vicinity of q = q0. In the regime q > q0, since the
mostly phonon-like LP exhibits a ∼25% plasmon admixture,
this polariton mode can be seen as a “dressed” phonon with
frequency red-shifted from ω0. Similarly, the “dressed”
plasmon mode (UP) is blue-shifted from the surface mode
frequency / 2plω due its ∼25% phonon weight.
The frequencies of the LP (red line) and UP (blue line) at

resonance are represented as a function of νpn/ω0 in the inset.
Here, the resonance is defined by the condition wq

0 = ω0, which
provides qr ≈ 2.2q0. We observe that the polariton splitting
wqσUP − wqσLP is symmetric with respect to wqσζ = ω0 (black
dotted line) for νpn ≪ ω0 and becomes slightly asymmetric in
the ultrastrong coupling regime,12 when νpn is a non-negligible
fraction of ω0. Furthermore, the splitting is found to decrease
rapidly as the electronic plasma frequency ωpl is increased.
In the second case q l 0.010 = (Figure 2b), the crystal is

thinner than the penetration depth γcr of the surface waves at
the two interfaces, and the latter overlap. This results in two
sets of modes σ = ± with different frequencies. For νpn = 0, the
symmetric and antisymmetric SPPs with frequency wqσ=±

0 are
represented as black dashed and solid lines, respectively. The
resonance between the symmetric SPP and the phonon mode
occurs for q ≈ q0, in the regime where the symmetric SPP is
mostly photon-like with wqσ=+

0 ∼ qc. Interestingly, the
resonance between the antisymmetric SPP and the phonon
mode is now shifted to a large wave vector qr ≈ 220q0, where
the antisymmetric SPP exhibits a pure plasmonic character. For
q/q0 → ∞, the two SPPs σ = ± converge to the surface
plasmon frequency / 2plω . For νpn ≠ 0, the antisymmetric LP
(thick red solid line) and UP (thick blue solid line) are split in
the vicinity of the resonance qr ≈ 220q0, while the symmetric
polaritons (thick colored dashed lines) do not feature any
anticrossing behavior for q ∼ q0. Similarly to that in (a), the
LPs σ = ± can be seen as dressed phonon modes with
frequencies red-shifted from ω0 for large q due to their
plasmon admixtures. Here, however, these dressed phonons
can propagate with very large wave vectors comparable to the
electronic Fermi wave vector.

■ ELECTRON−PHONON SCATTERING
We now show that the ability to tune the energy and wave
vector of the dressed phonons can affect the electron−phonon
scattering in the crystal. The coupling Hamiltonian between
individual electrons (electronic dark modes) and phonons
reads62

H c c c c B B( )K
K

K K
K Q

K K Q Q Qel pn
, ,

∑ ∑ξ= ℏ + ℏ +
α

α α−
† †

− −
†

(4)

The Fermionic operators cK and cK
† annihilate and create an

electron with wave vector K and energy ℏξK (K ≡ | K|) relative
to the Fermi energy. For simplicity, we assume a 3D spherical
Fermi surface providing ξK = ℏ(K2 − KF

2)/(2m), with m the
electron effective mass and KF the Fermi wave vector, and that

the coupling constant does not depend on Q as shown
theoretically for intramolecular phonons in certain crystals.63

Electron−phonon interactions are usually characterized by the
dimensionless coupling parameter λ, which quantifies the
electron mass renormalization due to the coupling to
phonons.55 At zero temperature, λ is defined as

N
1

( ) ( ( ) )K K
K3D

0∑λ δ ξ ω= ℜ −∂ Σ̅ |ω ω=

where ℜ stands for real part, N ( )K
VmK

K3D 2
F

2δ ξ= ∑ =
π ℏ

is the

3D electron density of states at the Fermi level, and
∂ωΣ̅K(ω)|ω=0 denotes the frequency derivative of the retarded
electron self-energy Σ̅K(ω) evaluated at ω = 0. An equation of
motion analysis64 of the electron Green’s function (GF)

i c c( ) ( ) (0)K K Kτ τ= − ⟨ ⟩† allows to write the electron self-
energy as

Bi
d

( )
2

( ) ( )QK
Q

K Q
,

2 ∫∑ω ω
π

ω ω ωΣ = | | ′ + ′ ′
α

α−
(5)

where B i d( ) e ( ) (0)Q
i

Q Q∫ω τ τ= − ⟨ ⟩α
ωτ

α α− is the phonon

GF written in the frequency domain, and B BQ Q Q= +α α α−
† .

In the absence of phonon−photon coupling (νpn = 0), there is
no hybridization between phonons and plasmons, nor is there
coupling to photons. Phonons therefore enter the Hamiltonian
Hpol only in the free contribution Hpn = ∑Q,αℏω0BQα

† BQα. In
this case, the equation of motion analysis simply provides
B ( ) 2 /( )Q 0

2
0
2ω ω ω ω= −α . Using this expression together

with the noninteracting electron GF ( ) 1/( )KK
0 ω ω ξ= − in

eq 5, one can compute the electron−phonon coupling
parameter for νpn = 0 as62

N
N2

( ) ( )
2

K Q
K Q

K0

2

3D 0

2
3D

0
∑ ∑λ

ω
δ ξ δ ξ

ω
= | | =

| |
−

In the presence of phonon−photon coupling (νpn ≠ 0), the
phonon dynamics is governed by the Hamiltonian Hpol, which
includes the coupling of phonons to plasmons and photons. It
is therefore convenient to express the 3D phonon operators
BQα and BQα

† in terms of the 3D hybrid modes ΠQαj and ΠQαj
†

and then project the latter onto the quasi-2D bright and dark
modes such that the electron−phonon Hamiltonian eq 4 takes
the form Hel−pn = ∑KℏξKcK

† cK + Hel−pn
(B) + Hel−pn

(D) . The
contribution of the bright modes reads

H f Q c c( ) ( )
j

j j j
K Q

K K Q q qel pn
(B)

, , ,

∑ ∑ η π π= ℏ * +
α σ

ασ σ σ−
†

− −
†

while the contribution Hel−pn
(D) of the dark modes that do not

interact with photons is given in the Supporting Information.

Here, j j
/

( / )
j

j j

0

pl
4 2η χ= ω ω

ω ω χ

̃

̃ +
where j

j

pn pl
2

0
2χ =

ν ω

ω ω̃ −
is associated

with the hybrid mode weights of the phonons. The electron
self-energy due to the interaction with bright modes reads

B

i f Q
d

( ) ( )
2

( )

( )

j
j

q j

K
Q

K Q
(B)

, , ,

2 2 ∫∑ω η ω
π

ω ω

ω

Σ = | | ′ + ′

′

α σ
ασ

σ

−

(6)
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where B i d( ) e ( ) (0)q j
i

q j q j∫ω τ τ= − ⟨ϒ ϒ ⟩σ
ωτ

σ σ− and ϒqσj = πqσj
+ π−qσj

† . As detailed in the Supporting Information, we now use
the equation of motion theory to calculate the GF B ( )q j ωσ . For

νpn = 0, one simply obtains B ( ) 2 /( )q j j j
2 2ω ω ω ω= ̃ − ̃σ , which

provides B B( ) ( )q Q1 ω ω=σ α since ω̃1 = ω0 (and ω̃2 = ωpl). In
this case, η1 = 1, η2 = 0, and only the pure phonon term j = 1
therefore contributes to ΣK

(B). We then calculate B ( )q j ωσ and
the self-energy eq 6 for νpn ≠ 0 and decompose the electron−
phonon coupling parameter into its bright and dark mode
contributions: λ = λ(B) + λ(D) for νpn ≠ 0, and λ0 = λ0

(B) + λ0
(D)

for νpn = 0. The contributions λ(B) and λ0
(B) are different

because bright modes interact with photons for νpn ≠ 0, while
they do not for νpn = 0. Similarly, λ(D) and λ0

(D) are a priori
different since dark modes are hybrid plasmon−phonon modes
for νpn ≠ 0, while they reduce to bare phonons and plasmons
for νpn = 0. However, we show in the Supporting Information
that λ(D) = λ0

(D), which means that, at the level of the RPA, the
hybridization between plasmons and phonons cannot solely
lead to a modification of the electron−phonon scattering.
Finally, the relative enhancement of the electron−phonon
coupling parameter reads62

N
f Q

1
( ) ( 1) ( ) ( )K q

K Q
K Q

0

0

0

3D
2

, ,

2∑ ∑
λ

λ λ
λ

δ ξ φ δ ξ

Δλ ≡
−

= − | |
α σ

σ ασ −

(7)

where the function φqσ is given in the Supporting Information.
The latter describes the renormalization of the phonon energy
due to the coupling to plasmons and photons and depends on
the polariton frequencies wqσζ. It is represented in Figure 3a
together with the frequency dispersion of the LPs wqσLP/ω0
corresponding to the red solid and dashed lines in Figure 2b.
First, we find that the contributions of the LPs to φqσ largely
dominate over the contributions of the other polaritons.
Second, we observe that φqσ is anticorrelated with the
dispersion of the LPs, whenever the latter exhibit a finite
phonon weight. For instance, φqσ=− reaches large values in the
region q ≲ q0 where the frequency of the antisymmetric LP
(≈35% phonon for νpn = 0.5ω0) is far away from the bare
phonon frequency. In contrast, while wqσ=+LP ≪ ω0 in this
region, φqσ=+ ≈ 1 since the symmetric LP is fully photon-like

for q ≲ q0. Note that for νpn/ω0 → 0, the LPs for q > qr are
fully phonon-like with wqσLP → ω0, and one finds that φqσ → 1
does not contribute to

0λ
Δλ in this region. For q < qr, φqσ does

not contribute to
0λ

Δλ because of the vanishing phonon weight

of the LP for νpn/ω0 → 0.
The relative enhancement of the electron−phonon coupling

0λ
Δλ is represented in Figure 3b as a function of q l0 and νpn/ω0.

We find that it can reach large values ≳ 10% for νpn ≳ 0.4ω0

and l sufficiently small (q l 0.010 ≈ ). The enhancement of
0λ

Δλ

when decreasing the crystal thickness l can be understood by
realizing that the function |fασ(Q)|

2 entering eq 7 scales as
l1/( crγ∼ ), as shown in the Supporting Information. This stems

from the fact that the dressing of 3D phonons by 2D
evanescent waves decaying exponentially at each interface
increases when decreasing the crystal thickness. However,
when the crystal thickness becomes too small (e.g., when
K l 1F ≲ ), the description of the matter excitations by 3D fields
breaks down, and quantum confinement effects have to be
taken into account in the model. The parameters of Figure 3b
are l 10 nm= for ℏω0 = 0.2 eV, and KF = 1 nm−1. We find that
the enhancement of the electron−phonon coupling strongly
increases with the ratio q0/KF, i.e., when the mismatch between
the typical photonic and electronic wave vectors is reduced.
This can occur in materials with larger phonon frequency and/
or lower electron density. In the latter case, however,
decreasing KF requires considering larger l for the 3D
description of the matter fields to be valid, which in turn
leads to a reduction of

0λ
Δλ .

For instance, bilayer graphene with l 0.4nm≈ 65 exhibits an
infrared-active phonon mode at ℏω0 = 0.2 eV42 and has been
recently shown to feature superconductivity at low carrier
densities ≈2 × 1012 cm−2 when the two sheets of graphene are
twisted relative to each other by a small angle.52 In this regime,
we find that ωpl ≈ ω0, q l 7 100

4≈ × − , KF ≈ 1.6 × 103q0, and
the large phonon−photon coupling strengths νpn ≈ 0.25ω0

42

allow reaching the ultrastrong coupling regime. Using these
parameters, we find that the contribution of surface plasmon−
phonon polaritons to the electron−phonon scattering is

expected to reach a very large value, 2.7
0

≈
λ
Δλ . However, the

Figure 3. (a) Function φqσ versus q/q0 for νpn/ω0 = 0.5, q l 0.010 = , and ωpl = 1.5ω0. Inset: Normalized frequency dispersion of the LPs wqσLP/ω0

corresponding to the red solid and dashed lines in Figure 2b. The contributions of symmetric (σ = +) and antisymmetric (σ = −) modes are
depicted as dashed and solid lines, respectively. (b) Relative enhancement of the electron−phonon coupling parameter

0λ
Δλ given by eq 7 versus q l0

and νpn/ω0, for ωpl = 1.5ω0 and KF = 103q0.
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small thickness of bilayer graphene such that K l 1F ∼ in this
weakly doped regime implies that quantum confinement effects
become important. Furthermore, the failure of the 3D model
assuming ωpl → const as q → 0 can be seen in the dispersion
of the optical plasmon mode in bilayer graphene,58 which is
known to be qplω ∼ as q → 0.

■ CONCLUSION
In summary, we have carried out a nonperturbative quantum
theory of intrinsic, lossless plasmon−phonon polaritons valid
for arbitrary large coupling strengths and discussed the
different regimes of interest obtained by tuning the crystal
thickness and the phonon−photon coupling strength. This
theory allows characterizing the hybridization between
plasmons and phonons in the crystal, which cannot lead solely
to a modification of the electron−phonon scattering at the
level of the RPA. Considering the coupling of these hybrid
plasmon−phonon modes to photons, we have found that in
the regime where both the electronic and ionic plasma
frequencies become comparable to the phonon frequency, a
dressed low-energy phonon mode with finite plasmon weight
arises. In the case of quasi-2D crystals, the in-plane wave vector
of this dressed phonon can reach very large values comparable
to the Fermi wave vector, which is shown to lead to an
enhancement of the electron−phonon scattering. It is an
interesting prospect to investigate whether this effect could
modify superconductivity in certain molecular crystals. While
our model specifically addresses the case of metallic crystals
with large ionic charges supporting far/mid-infrared pho-
nons,42−45,47 it can be directly generalized to describe other
types of excitations such as excitons and extended to other
geometries. Further useful extensions include the presence of
quantum confinement in 2D materials and dissipation. In
addition to the intrinsic phonon linewidth, the main source of
dissipation is the damping of plasmons with large wave vectors
due to the electron−hole continuum (electronic dark
modes).55 However, since the dressed phonons feature only
a ∼25% plasmon admixture at large wave vectors, this effect is
not expected to dramatically affect our results.
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