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Optimal protocols and universal time-energy bound in Brownian thermodynamics
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We propose an optimization strategy to control the dynamics of a stochastic system transferred from one
thermal equilibrium to another and apply it experimentally to a Brownian particle in an optical trap under
compression. Based on a variational principle that treats the transfer duration and the expended work on an
equal footing, our strategy leads to a family of protocols that is either optimally cheap for a given duration
or optimally fast for a given energetic cost. This approach unveils a universal relation �t �W � (�t �W )opt

between the transfer duration and the expended work. We verify experimentally that the lower bound is reached
only with the optimized protocols.
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Controlling the transformation of equilibrium states is a
major concern in stochastic energetics. Though still in its
infancy, this is an important research area with promising
applications both from classical and quantum perspectives
[1–5]. Recent work demonstrated the possibility to control
the evolution of a small system, forcing, for instance, a
nano- or microsystem to evolve from one equilibrium state
to another much faster than the relaxation time expected
from the energy difference between the two equilibria [6–8].
From a mathematical viewpoint, this is an interesting optimal
control problem, which can be studied using the Pontryagin’s
principle [9,10].

Accelerated equilibration protocols have direct thermo-
dynamic consequences. A protocol that reduces the transfer
duration is necessarily more expensive energetically, so that
the requirements of being fast and cheap cannot be satisfied
simultaneously [6]. Earlier proposals have discussed the pos-
sibility to minimize the work expended through a transfer
whose duration is initially fixed [1]. But with duration and
work not treated on an equal footing, these proposals prevent
one from deriving and exploiting the mutually exclusive rela-
tion between a protocol’s duration and its energetic cost. Such
a relation is, however, of paramount importance to design
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protocols that are optimized from both points of view. The
possibility for optimal control turns out to be particularly
relevant in the field of stochastic engines, where it is necessar-
ily related to the global figure of merit of the system [11,12].

In order to derive such optimal protocols, we adopt an
approach that treats both the duration of the transfer and
the expended work in a completely symmetric way. Our
strategy is implemented on an optical trap that determines a
simple framework (harmonic potentials) where theory can be
elaborated in perfect tandem with experiments. This provides
a capacity for exploring optimization with two ingredients.
First, each protocol is defined by a path in the phase space
(κ, s), where κ is the stiffness of the optical trap and s is the
variance of the position of the particle. Second, we construct a
functional J[κ, s] that is composed of two terms, correspond-
ing, respectively, to the total work and total duration, with a
Lagrange multiplier λ regulating the trade-off between these
two quantities. Minimizing the above functional with fixed
boundary conditions yields the desired optimal protocol κλ(s).
For instance, λ � 1 gives a protocol of low energetic cost but
long duration, while λ � 1 gives a fast protocol requiring a
large amount of work.

Remarkably, this treatment leads to a universal relation
�t �W � (�t �W )opt between the transfer duration �t and
the expended work �W (in excess of the equilibrium free-
energy difference), where the lower bound depends exclu-
sively on the initial and final states and is reached only under
optimal control conditions. This result unveils a fundamental
feature that underpins all optimization procedures in stochas-
tic thermodynamics [13,14]. In particular, we demonstrate that
protocols optimized under the further constraint of a limited
speed of variation for κ (s) do converge towards work-duration
optimal ones.

We optically trap a Brownian particle—a polystyrene mi-
crosphere of radius 500 nm—in water at room temperature
inside a harmonic potential; see the Supplemental Material,
Sec. A [15], and [16,17]. We record the instantaneous motion
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x(t ) of the microsphere along the trap optical axis. With the
trap stiffness κ proportional to the trapping laser intensity I , it
is possible to define, by modulating I (t ), a given protocol κ (t )
for the transfer from an initial thermal equilibrium at time ti
to a final equilibrium at time t f . By performing a series of
N identical protocols on the trapped microsphere, we build
a statistical ensemble of trajectories that yields a probability
density function (PDF) of positions x. The dynamics of the
system is described by the variance s(t ) extracted from the
PDF of positions, which evolves as [18,19]

γ
ds

dt
= −2κ (t )s + 2Dγ , (1)

where γ is the Stokes drag coefficient and D = kBT/γ ∼
0.4 μm2/s is the Brownian diffusion coefficient fixed by
the temperature T (room temperature) of water and the
Boltzmann constant kB.

Equation (1) fully determines the statistical properties of
the system where the initial and final equilibria correspond
to the stationary solutions siκi = s f κ f = kBT with the PDF
that remain Gaussian for all intermediate times between ti and
t f . The cumulative energetics involved during the protocol
is directly related to the time evolution of s(t ), giving the
ensemble average expended work W (t ) = 1

2

∫ t
ti

dts(t )κ̇ (t ) and

dissipated heat Q(t ) = − 1
2

∫ t
ti

dt ṡ(t )κ (t ) [14,20].
Our purpose is to control the dynamics of the microsphere

so that the transfer between the two equilibria is optimal with
respect to both duration and energetics. If one instantaneously
switches the trap stiffness from κi to κ f > κi (i.e., closing
the trap in a steplike way), the typical relaxation time to the
new equilibrium is given by τrelax = 2γ /κ f . Our optimization
strategy starts with the idea of using the variance s as the
independent variable of the problem, instead of the time t .
This is possible whenever the function s(t ) is monotonic and it
enables us to express the control parameter as κ (t ) = κ̂[s(t )].
The advantage of this approach is that we can easily write
down, as functionals of κ̂ (s), both the transfer duration,

�t[κ̂ (s)] ≡ t f − ti = 1

2

∫ s f

si

γ ds

Dγ − s κ̂ (s)
, (2)

and the expended work,

W [κ̂ (s)] = −1

2

∫ s f

si

κ̂ (s)ds + 1

2
(κ f s f − κisi ), (3)

where the second term on the right-hand side vanishes because
the initial and final configurations are thermally equilibrated.

Next, we define the functional to be minimized as twice the
sum of W and �t ,

J[κ̂ (s)] =
∫ s f

si

γ ds

Dγ − s κ̂ (s)
− λ

∫ s f

si

κ̂ (s)ds, (4)

where λ is a Lagrange multiplier that regulates the trade-off
between transfer duration and work. Within this framework,
the optimization strategy can be interpreted as the search
for the trajectory in the (s, κ ) space that minimizes J[κ̂ (s)]
while keeping the extrema fixed at equilibrium, i.e., siκi =
s f κ f = kBT = Dγ . Once written as J = ∫ s f

si
L[s, κ̂ (s)]ds,

this functional can be minimized using the standard
Euler-Lagrange equation d/ds(∂L/∂κ̂ ′) − ∂L/∂κ̂ = 0, where

κ̂ ′ ≡ d κ̂/ds, yielding the following solution:

s κ̂ (s) = Dγ +
√

γ s/λ, (5)

for a protocol that eventually closes the trap with κ f > κi [21].
Equation (5) encapsulates the main result obtained so

far. For instance, the quasistatic solution (ṡ ≈ 0) is obtained
by taking λ → ∞, which yields an infinite duration but
the smallest possible expended work, WQS = 1

2 Dγ ln(κ f /κi ),
equal to the free-energy difference, as expected for a qua-
sistatic process. For finite λ and making use of Eq. (5),
Eq. (1) can be rewritten as ṡ = −2

√
s/γ λ, which possesses

the general solution s(t ) = (
√

si − t/
√

γ λ)2. Inserting this
expression into Eq. (5) yields the optimal evolution of the trap
stiffness,

κ (t ) = Dγ + √
γ si/λ − t/λ

(
√

si − t/
√

γ λ)2
, (6)

which defines our protocol for the optimized transfer.
It is important to stress that in our case, the Euler-Lagrange

equation is purely algebraic so that one cannot enforce the
initial and final conditions. Thus, except for the quasistatic
limit, Eq. (6) does not satisfy the conditions for which the
system is at thermal equilibrium in the initial and final states.
In order to ensure that si, f κi, f = Dγ , we need to add to Eq. (6)
two discontinuities (as already noticed in [1,22]). The optimal
protocol thus consists of three successive sequences:

(1) At time t = ti, the trap stiffness is suddenly changed
from κi = Dγ /si (initial equilibrium) to κ (t+

i ) = κ+
i , such

that κ+
i − κi = √

γ /(λsi), while keeping the variance equal
to si.

(2) Between t+
i and t−

f , the stiffness varies according to

Eq. (6), reaching κ (t−
f ) ≡ κ−

f = Dγ /s f + √
γ /(λs f ).

(3) At time t = t f , the stiffness is suddenly changed from
κ−

f to κ f = Dγ /s f (final equilibrium), while keeping the
variance equal to s f .

Experimentally, we have performed, on the trapped mi-
crosphere, a series of N = 2 × 104 such optimal protocols,
forcing the microsphere to relax to thermal equilibrium within
a time �t chosen to be shorter than τrelax. Figure 1 displays
s(t ) between two equilibria for a shortened duration �t ∼
τrelax/10, where τrelax = 2γ /κ f = 3.22 ± 0.09 ms. The reduc-
tion in s(t ) from its initial value corresponds to the fact that the
trap is stiffer at the end of the protocol with κ f /κi ∼ 1.85. It
is in excellent agreement with the theory.

This reduction in the transfer duration has an energetic
cost that can be evaluated for each sequence and measured
experimentally by evaluating the cumulative work W (t )
from the recorded evolution of κ̂ (s). Figure 2 shows the time
evolution of W (t ) split into three sequences. First, the quantity
of work, W (1) = si(κ+

i − κi )/2, is injected instantaneously
into the system at the time ti as the trap is suddenly stiffened
from κi to κ+

i . During the second sequence, the injection
of work continues as the trapping volume is progressively
reduced, reaching W (2) = WQS + √

γ /λ[(s3/2
i − s3/2

f )/3 −
(s1/2

i − s1/2
f )/2] at t = t−

f , when κ = κ−
f . Finally, the trap is

suddenly expanded at t = t f , and the system instantly reaches
its final equilibrium state, delivering to the thermal bath a
quantity of work equal to W (3) = s f (κ f − κ−

f )/2. For t > t f ,
the thermal steady state is characterized by W = Q.
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FIG. 1. Time evolution of the variance s(t ) for an optimal pro-
tocol of duration of �t = 3.47 × 10−4 s ∼ τrelax/10, indicated by
the vertical solid line. Starting at time ti at thermal equilibrium
with κi = 2.77 ± 0.08 pN/μm and a mean si = 1.48 × 10−15 m2,
the variance is extracted from the PDF of positions and normalized
to the final equilibrium state associated with the plateau-averaged
value s f = 7.75 × 10−16 m2 reached after t f , corresponding to κ f =
5.22 ± 0.15 pN/μm. The Lagrange multiplier λ = (1.27 ± 0.02) ×
1017 s/J associated with this protocol is determined by the set of
values (�t, si, s f ) and Eq. (8). The superimposed black continuous
line is the theoretical time evolution of the optimized variance,
s(t ) = (

√
si − t/

√
γ λ)2, calculated with the measured values. The

experimental error bars correspond to a 95% confidence interval
for s(t ), including calibration uncertainties (see more details in
the Supplemental Material, Sec. A [15]). Inset: The experimental
optimal protocol κ (t ), normalized to the initial stiffness κi.

In contrast, heat is continuously dissipated from the mi-
crosphere to the thermal bath, as seen in Fig. 2, from the
monotonic increase of the ensemble average cumulative heat
Q(t ) throughout the protocol. This evolution is almost exactly
linear in time, which corresponds to a constant production
of entropy. We stress again that the experimentally measured
values of the heat and work injected in and extracted from
the system are in excellent agreement with the theoretical
predictions.

The total work expended throughout the optimal protocol
is evaluated by adding the contributions from each of the three
sequences described above. One obtains

Wopt = WQS +
√

γ /λ
(
s1/2

i − s1/2
f

)
. (7)

Similarly, the total duration of the optimal protocol is obtained
by inserting Eq. (5) into Eq. (2), yielding

�topt =
√

γ λ
(
s1/2

i − s1/2
f

)
. (8)

The above expressions clearly show that our optimization pro-
cedure is perfectly symmetric as far as duration and work are
concerned and that the trade-off between these two quantities
is governed by the Lagrange multiplier λ. Indeed, one can
choose λ using Eq. (8) to fix the total duration and then
the minimum expended work will be given by Eq. (7); or,
alternatively, one can determine λ through Eq. (7) to fix the
total work and then the minimum duration of the process
will be given by Eq. (8). This leads us to define the “excess

FIG. 2. Energetics associated with the optimal protocol de-
scribed in Fig. 1 for �t ∼ τrelax/10. The ensemble average cu-
mulative work W (t ) (blue curve) and heat Q(t ) (red curve) are
measured with respect to the initial thermal equilibrium. The ex-
perimental error bars are determined by the propagation of variance
and calibration (i.e., stiffness) uncertainties (see the Supplemental
Material, Sec. A [15]). At t > t f , the system has reached a thermal
steady state with W (t > t f ) = (0.981 ± 0.059) kBT ∼ Q(t > t f ) =
(0.983 ± 0.060) kBT . Inset: The control parameter κ̂ (s), with the
arrows corresponding to the time evolution.

work” of the optimal protocol as �Wopt ≡ Wopt − WQS and
to note that the product �topt �Wopt = γ /2(s1/2

i − s1/2
f )2 is

independent of λ and only depends on the initial and final
states [23]. This equality fixes the mutually exclusive relation
between transfer duration and expended work under optimal
control. It corresponds to the frontier value of a universal
exclusion region, �t �W � γ /2(

√
si − √

s f )2, that bounds
from below all protocols that are not optimal.

The frontier can be drawn experimentally by measuring
�Wopt for a series of optimal protocols with different transfer
durations �t . By normalizing each measured value of �Wopt

to the associated value of γ /2(
√

si − √
s f )2, one can test

the universal nature of the bound. This is clearly confirmed
in Fig. 3, with all the optimal solutions implemented ex-
perimentally falling precisely on the 1/�t curve. To further
prove that the frontier corresponds to a lower bound, we
have verified experimentally that the {�t,�W } coordinates
of typical nonoptimal protocols all fall above the expected
bound, as displayed in Fig. 3.

A salient feature of our optimal control procedure is
represented by the sudden jumps in stiffness that have to
augment the solution of Eq. (6) in order to comply with
thermally equilibrated initial and final configurations. From
an experimental point of view, such discontinuities do not
constitute a weakness of the procedure, as they correspond to
finite and measurable quantities of work exchanged between
the bath and the system [10,24]. But it is interesting to stress
that one asset of our variational strategy is its capacity to
construct smooth protocols that are as close as desired to the
optimal ones. For this, we need to control the derivatives of
the function κ̂ (s) by adding the gradient term

∫ s f

si
|κ̂ ′(s)|2ds to

the functional J[κ̂ (s)] in Eq. (4), with a second Lagrange mul-
tiplier ε that acts as a regularization parameter by removing
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FIG. 3. Extracted excess works �Wopt revealing the mutually
exclusive relation between �Wopt and �t for a series of protocols.
Optimal protocols (squares) for transfer durations �t = τrelax/n,
with successively n ∼ 34, 30, 22, 16, 10, 6, 3, and 2, “engineered
swift equilibration” protocol [6] (black diamond) defined for �t =
3.47 × 10−4 s ∼ τrelax/10 (also in inset), steplike protocol (black
star) at τrelax ∼ 3.22; see details in the Supplemental Material,
Sec. B [15]. All optimized coordinates {�t,�Wopt/[γ /2(

√
si −√

s f )2]} precisely fall (within error bars) on the 1/�t curve, whereas
the values corresponding to the nonoptimal protocol fall above
the universal bound. Insets: coordinates measured for smooth (thus
suboptimal) protocols for n ∼ 22 and n ∼ 10, and smoothness pa-
rameters ε = 5 × 10−6, ε = 10−6, and ε = 0, expressed in units
of s2

i /(Dκ2
i ). Such smooth protocols are defined using the same

Lagrange multiplier λ as their associated optimal protocols. For each
case, the product �t�W converges to the optimal lower bound (solid
blue line) as ε → 0.

the discontinuities in κ̂ (s). Hence, we arrive at the modified
Euler-Lagrange equation 2ε d2κ̂/ds2 = γ s/(Dγ − sκ̂ )2 − λ,
which can be solved numerically as a boundary value prob-
lem, with initial and final conditions at thermal equilibrium,
κ̂ (si, f ) = Dγ /si, f . Once the solution κ̂ (s) is known, the time
evolution of the variance s(t ) is found by integrating Eq. (1)
(more details are given in the Supplemental Material, Sec. C
[15]).

Using the same values of λ that defined the optimal pro-
tocols with, respectively, �t ∼ τrelax/22 and �t ∼ τrelax/10
(Fig. 3, inset), we implemented two smooth protocols for
two different values of the Lagrange multiplier. As shown in
Fig. 4, the smooth protocols closely follow the optimal ones,
except near the beginning and the end of the process, where
they approach the equilibrium states in a continuous way.
For the same value of λ, smooth protocols give slightly longer
transfer durations than the optimal protocol but, as expected,
the expended work is slightly smaller in the smooth case
than in the optimized limit. The nonoptimal character of the
smooth protocols is clearly seen in the insets of Fig. 3, where
all {�t,�W } coordinates lie above the universal bound, and
only converge towards it in the ε → 0 limit.

In conclusion, we have devised a family of optimal pro-
tocols that transfer an optically trapped microsphere between

FIG. 4. Comparison of the cumulative energetics—expended
work W (t ) (blue curves) and dissipated heat Q(t ) (red curves)—
between an optimal protocol defined for �t = 1.72 × 10−4 s ∼
τrelax/22 and two smooth protocols with ε = 5 × 10−6 and ε = 10−6,
expressed in units of s2

i /(Dκ2
i ), and identical value of λ = (2.97 ±

0.12) × 1016 s/J. As seen in the insets of Fig. 3, although the smooth
protocols involve slightly less expended work (1.36 ± 0.06 kBT for
ε = 5 × 10−6 and 1.65 ± 0.06 kBT for ε = 10−6) than the optimal
one (1.69 ± 0.06 kBT ), they correspond to longer transfer durations
(2.48 × 10−4 s for ε = 5 × 10−6 and 2.14 × 10−4 s for ε = 10−6).
Inset: Superimposed evolutions κ (t ) vs s(t ) for the three protocols,
showing the continuous nature of the smooth protocol and illustrating
the progressive convergence to the optimal protocol in the ε → 0
limit. For each protocol, the curves are normalized to the correspond-
ing κi for κ (t ) and s f for s(t ).

two equilibria, minimizing both the transfer duration and the
associated energetic cost. Within such protocols, the trade-
off between duration and work can be modulated at will by
tuning a single Lagrange multiplier given by our variational
approach. A key result of our work is to show that the
product �t �W is bounded from below, in a way reminiscent
of energy-time uncertainty relations. Similar bounds were
noticed in earlier works [13,14], but only for some special
cases. Here, our bound is universal (it depends exclusively
on the initial and final states) and is only reached for the
optimal protocol. Further extending the present results to
quantum systems may open new interesting perspectives in
the burgeoning field of quantum stochastic thermodynamics
[25–28].
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