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We demonstrate that radiation pressure force fields can be measured and reconstructed with a resolution of
0.3 fN (at a 99.7% confidence level) using an ergodic ensemble of overdamped colloidal particles. The
outstanding force resolution level is provided by the large size of the statistical ensemble built by recording
all displacements from all diffusing particles, regardless of trajectory and time. This is only possible because
the noise driving the particles is thermal, white, and stationary, so that the colloidal system is ergodic, as we
carefully verify. Using an ergodic colloidal dispersion for performing ultrasensitive measurements of external
forces is not limited to nonconservative optical force fields. Our experiments therefore give way to interesting
opportunities in the context of weak force measurements in fluids.
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I. INTRODUCTION

That light can exert a pressure force on an illuminated
object is one central prediction of Maxwell’s theory [1] that
immediately challenged a few experimentalists (see Ref. [2]
and references therein). But their initial attempts in measuring
radiation pressure were mostly hindered by thermal effects
induced by the illuminating light, such as convective and
radiometric forces. The first positive experimental demon-
stration of light radiation pressure was achieved by P. N.
Lebedev in 1899, with results published in a 1901 article [3].
In this tour-de-force experiment performed with reflecting
winglets suspended on torsional balances, Lebedev was able
to measure radiation pressure forces down to 3 × 10−10 N,
with an accuracy better than 6%.

Today, the interest in measuring radiation pressure re-
mains. The nonconservative character of radiation pressure
indeed plays a central role in the generation and control
of complex optical force fields [4–10], with nontrivial op-
tomechanical effects recently discussed [11–19]. Usually, ex-
periments measuring external force fields involve Brownian
probes and monitor, through different means and methods,
the shifts of the statistical distributions of displacement of the
probes from their stable equilibrium positions induced by the
force fields.

In this paper, we show that an ensemble of colloidal par-
ticles diffusing in the overdamped regime within an external
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nonconservative force field can be advantageously used for
ultrasensitive radiation pressure measurements. We demon-
strate indeed an unprecedented level of force resolution of
0.3 fN (within a thermally limited 99.7% confidence interval)
by exploiting the large size of the statistical ensemble of
Brownian displacements supplied by the colloidal dispersion.
We emphasize that such large statistical ensembles gather
displacements recorded on different trajectories and at differ-
ent times, so that our force measurement method crucially
relies on the ergodic hypothesis. To qualify our colloidal
dispersion as an ergodic system, and thus validate our strategy,
we demonstrate the thermal and stationary nature of the noise
driving our Brownian colloidal ensemble.

One cannot fail to highlight the importance of the ergodic
hypothesis which is needed for averaging out the contribution
of the thermal noise when determining the force, as we explain
below. The hypothesis is pivotal in many recent experiments,
in particular those involving optical traps in fluids, but it is
scarcely verified. In this work, we close this loophole by
resorting to an appropriate measure of ergodicity. This mea-
sure yields a precise confirmation of the ergodic hypothesis
for our experiments, all systematic and tracking errors being
accounted for.

II. EXPERIMENTAL SETUP

Our experiments consist in illuminating with a horizontal
laser beam a colloidal dispersion of micron-sized melamine
spheres, diffusing and sedimenting inside a cuvette filled with
water. Coming from one side of the cuvette, the laser beam
induces a radiation pressure on the particles that modifies
their diffusion dynamics. As discussed in detail below, this
mechanical action can be analyzed by looking at colloidal
trajectories in real-time, recorded by tracking the successive
positions of the particles, which are fluorescent (weakly dye-
doped). The large number of particles leads to collecting a
large number of trajectories, and thereby to providing a large
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FIG. 1. Schematics of the experimental setup. (a) Using a half-
wave plate (HWP), a polarizing beam-splitter (PBS), and two mir-
rors (M1, M2), a linearly polarized single-mode TEM00 horizontal
laser beam (633 nm, 200 mW) can either be directed toward the
sample along the y axis (single-beam mode) or be split into two
noninterfering (crossed polarizations) counterpropagating beams of
identical intensity (using the HWP for the fine intensity balance).
A microscope objective (NA = 0.25, 20×) collects the fluorescence
of dye-doped melamine spheres (diameter d = 940 ± 50 nm, from
microParticles GmbH) diffusing in water inside the cell. The parti-
cles are imaged on a CCD camera at a frame rate f = 120 Hz and
tracked using an algorithm adapted from [20]. A filter F eliminates
any stray light coming from the laser. (b) The cell consists of a
quartz cuvette of dimensions—10(x) × 2(y) × 35(z) mm3—chosen
such that the imaging region-of-interest is located far away from any
wall, allowing us to neglect safely any perturbation of the wall on the
diffusion dynamics. The profile of the laser sent through the cuvette
is set using 400-mm focusing lenses (L1,L2) for large waist w0 =
65 μm and Rayleigh range zr = 18 mm, so that the illumination is a
plane wave with a Gaussian distribution of intensity in the transverse
z direction. (c) Region-of-interest—350(y) × 250(z)μm2—imaged
(using lens L3) from the center of the illumination zone. The right-
hand side arrow corresponds to the laser propagation direction. In
this single-beam mode using a fairly high-intensity, 0.37 kW cm−2,
the recorded trajectories clearly reveal the shift induced along y by
radiation pressure. In such conditions of high intensity, the diffusion
along z results from the combination of sedimentation and laser-
induced convection—see main text and Appendix A. The crosses
indicate the initial positions taken by the particles: Due to strong
convective drag, the particles are diffusing upwards.

statistical ensemble of single-step displacements on which a
high-precision motional analysis can be performed. To do so,
the optical setup, described in detail in Fig. 1, has important
features.

First, the cuvette has large dimensions compared to the
size of the imaging region-of-interest that only extends over
a small central region far away from all walls. This, together
with the small-volume fraction of the colloidal dispersion
allows us to neglect the influence of possible boundary-wall
and particle-interaction effects on the colloidal diffusion dy-
namics. Importantly, such dimensions also ensure that sedi-
mentation and possible laser-induced convection effects (see
Appendix A) are laminar, only acting along the vertical z axis.
These effects thereby are perfectly projected out by looking at
Brownian motion on the y axis only. This is a central point in
our methodology, as discussed below.

Second, the illumination conditions are set so that, within
the imaging region-of-interest, the Gaussian profile of the
laser beam is uniform along the horizontal optical y axis (i.e.,
a Rayleigh length much larger than the width of the cuvette)
with a waist much larger than the diameter of a particle. Such
conditions, close to plane-wave illumination, minimize any
gradient contribution to the optical force field that turns out
to be only determined by radiation pressure.

Third, our setup can be operated in two illumination
modes. In the single-beam mode, the laser beam illuminates
the dispersion from one direction and pushes the particles
along the optical axis y—as described in Fig. 1(c). This mode
is used for measuring radiation pressure forces, whose effects,
along y, are decoupled from sedimentation and convection
along the z axis. The possibility to access a free diffusion
regime is particularly important for carefully assessing the
properties of the noise driving the colloidal system and for
verifying its ergodic nature. But this regime is unreachable
in the single-beam mode where the laser, even at its lowest
intensity at the threshold of detection level, always pushes
the particles. For this reason, we implement a dual-beam
mode that consists in illuminating the dispersion from both
sides along the optical y axis. Because the laser beam is
split by a polarizing beam splitter, the two counterpropagat-
ing beams are crossed polarized. They do not interfere and
yield therefore a uniform intensity profile inside the cuvette.
The intensities in each beam are carefully balanced so that
radiation pressures coming from both sides of the cuvette can
be perfectly compensated. In such conditions, the colloidal
particles freely diffuse along the y axis.

III. BROWNIAN DYNAMICS UNDER RADIATION
PRESSURE FORCE FIELD

With gravity and convection acting along the z axis only,
the Brownian motion projected on the y axis for each micron-
sized colloidal particle can be described independently from
these effects. Therefore, the motion of each particle, subjected
inside the cell to the external optical force field F directed
along the y axis and depending on both y, z coordinates of the
particle [21], is described by the simple overdamped Langevin
equation:

γ ẏi(t ) = F (yi, zi, t ) +
√

2kBT γ ξi(t ), (1)

where yi(t ) corresponds to the position of the ith particle mea-
sured at a time t along the y axis, kB the Boltzmann constant,
T the temperature of water, and γ the Stokes friction drag.
The stochastic Langevin force is modeled as a Wiener process
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that satisfies 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), with
δi j = 1 if i = j and 0 if i �= j, and where 〈· · · 〉 stands for an
ensemble average performed over all the realizations of the
stochastic variable ξi(t ).

Experimentally, we acquire images at a given frame rate f
and thus implement a discrete version of the equation involv-
ing successive displacements �yi(tk ) = yi(tk+1) − yi(tk ). The
discretized Langevin equation reads as

γ
�yi(tk )

�t
= F (yi, zi, tk ) +

√
2kBT γ

wi(tk )√
�t

, (2)

where tk = k�t with �t = 1/ f and k an integer number.
Thermal fluctuations are set by wi(tk ) as a discrete ran-
dom number, N (0, 1) normally distributed, which satisfies
〈wi(tk )〉 = 0 and 〈wi(tk )w j (tl )〉 = δi jδkl .

With a statistical distribution of displacements recorded
over the ensemble {i} of colloidal particles and for all times {k}
at a given laser intensity, we perform an ensemble averaging
of Eq. (2),

〈F (yi, zi, tk )〉 = γ
〈�yi(tk )〉

�t
, (3)

that allows us to measure the strength of the force field, as
soon as the Stokes friction drag is determined, as discussed in
details below.

We emphasize that this simple ensemble average relation
relies on averaging out the thermal fluctuation term in Eq. (2).
That 〈wi(tk )〉 = 0 in the ensemble of all displacements mea-
sured at different times and over different trajectories can
only be true if one first confirms that all displacements are
driven by the same source of thermal (white), stationary noise
regardless of the chosen trajectory i and the selected time k.

IV. THERMAL NOISE AND STATIONARITY

To verify the thermal and stationary properties of the
noise at play in our colloidal system, we illuminate the
colloidal dispersion in the dual-beam mode corresponding to
two external force fields that compensate each other. Under
such conditions, we perform an Allan variance-based analysis
on a reconstructed single long trajectory composed of all
concatenated displacements {�yi(tk )} over the ensemble of
trajectories {i}. This calculation, detailed in Appendix B, is
performed over 15 different experiments and the result is
displayed in Fig. 2(a). The Allan standard deviation clearly
shows, in log-log scale, the −1/2 exponent expected for a
system driven by a white thermal noise [22]. Remarkably, this
behavior spans ca. 3 decades of time lag �, showing no drift
in the experimental thermal noise and thereby indicating that
one can exploit the full ensemble of displacements indeed.

As reminded in Appendix B, the Allan variance is related
to the displacement covariance C(�, t ) = 〈�y�+t�yt 〉 which
can also be directly evaluated from all the displacement avail-
able in the concatenated trajectory. The result is displayed in
Fig. 2(b) showing that C(�, t ) fluctuates around a zero mean
for all time lags � > 0, as expected from the white noise
Allan deviation. The degree of stochastic independence of
each successive steps can be quantified using the correlation
of covariance η = C(�)/σ 2

�y which, as expected again for a

FIG. 2. (a) Allan standard deviations calculated for 15 exper-
iments performed in the dual-beam mode, using different laser
intensities (from 0.006 kW/cm2 to 0.221 kW/cm2) as function of
time lag �. The close agreement with the Allan standard deviation
theoretically expected for a thermal white noise is clear with the
red continuous line that corresponds to σ (�) = √

2kBT/(γ�)—see
Appendix B for a demonstration. Note that the increased fluctuations
in the Allan standard deviations at large time lags only comes
from a reduction in statistics. (b) The covariance and correlation of
covariance evaluated from all the available displacements are plotted
as a function of the time lag � to support the conclusion of the Allan
variance. They both show the uncorrelated nature of the noise over a
large temporal window of time lags. (c) Experimental time ensemble
average MSD measured along the y axis as a function of time lag �

for the different laser intensities given in panel (d). The superimposed
dashed line shows the 2D� MSD theoretically expected for a thermal
white noise. (d) Diffusion coefficient Dy (blue circles) extracted,
from the different y-axis MSD shown in panel (c), by fitting the first
15 points of the MSD—following Ref. [23]. Associated error bars at
a 99.7% confidence level on the MSD linear regression are displayed,
taking into account tracking errors discussed in Appendix C. As
seen on this panel, experimental values for Dy are in a good agree-
ment with the value D = kBT/γ calculated at given temperature
(T = 298.7 K), viscosity (η = 0.88 × 10−3 Kg m−1 s−1) and particle
diameter (d = 940 nm). The gray zone corresponds to uncertainty in
the diffusion coefficient coming from errors in temperature (δT =
±1.5 K), viscosity (δη = ±0.018 × 10−3 Kg m−1 s−1) and particle
diameter (δd = ±50 nm).

white noise, fluctuates around a zero mean with an amplitude
much smaller than 1.

It is also interesting to look at the time ensemble average
mean square displacement (MSD) 〈δy2

i (�)〉 evaluated by, first,
averaging over their duration Ti every single trajectory i MSD

δy2
i (�) = 1

Ti − �

∫ Ti−�

0
[yi(t

′ + �) − yi(t
′)]2dt ′, (4)

and, then, taking the mean over the ensemble {i} of trajectories
of such time averages.

The results, evaluated under the same dual-beam mode of
illumination for different laser intensities in each beam, are
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displayed in Fig. 2(c). The clear linearity of 〈δy2
i (�)〉, for all

time lags � corresponds to two important characteristics of
the stochastic process driving the particles: first, a zero mean
(linearity) and second, a slope 2D that measures the diffusion
coefficient D of the free Brownian motion along the y axis.
As shown in Fig. 2(d) for different laser intensities injected
in each path of the dual-beam mode, this measurement falls in
good agreement with the value D = kBT/γ expected from the
Langevin equation, including systematic tracking errors, tem-
perature value and particle size dispersion errors, as discussed
in details in Appendices C and D.

The zero mean, fixed variance and covariance independent
of the time lag, all together manifest the white stationary
character of the noise driving our experiments, in full agree-
ment with the stochastic description of the Langevin force in
Eq. (2).

V. ERGODICITY

This analysis implies that all the successive displacements
drawn from different single trajectories at different times
within the concatenated trajectory are driven by the same
white noise. Under such conditions, the colloidal dispersion
must behave like an ergodic system, at the level of which
it is possible to collect displacement values acquired from
different i trajectories at different k times and to perform
large time ensemble averages necessary to evaluate Eq. (3)
with great precision. In the context of high resolution force
measurements, therefore, ergodicity is an important property
to verify.

Stationarity implies that the ensemble average mean-
square displacement (MSD),

〈δy2(�)〉 = 1

N

∑
i

[yi(t + �) − yi(t )]2, (5)

is independent from the choice of the initial time t . As a
consequence, 〈δy2(�)〉 equals its time average that simply
corresponds to the ensemble mean 〈δy2

i (�)〉 of single {i} tra-
jectory time-average MSD given by Eq. (4). This property is
clearly seen in Fig. 3 with a ratio ρ(�) = 〈δy2

i (�)〉/〈δy2(�)〉
equal to one for all time lags.

Ergodicity per se then requires any single-trajectory time-
average MSD δy2

i (�) drawn from the trajectory ensemble {i}
to become equal to the ensemble mean of such time-average
MSD,

lim
T /�→∞

δy2
i (�) = 〈

δy2
i (�)

〉
, (6)

for a sufficiently long averaging time T . This time corre-
sponds to the full duration of the shortest trajectory recorded
and hence defines the duration on which all trajectories are
limited or possibly, if long enough, subdivided.

It is clear that this sufficient condition for ergodicity can
be quantified by looking at the evolution of the statistical
distribution of the single-trajectory MSD δy2

i (�), which, ac-
cording to Eq. (6), is expected to reach a mean value equal
to 〈δy2

i (�)〉 with a variance σ 2(δy2
i (�)) decreasing as T /�

increases. Accordingly, and following Ref. [24], we introduce

FIG. 3. Ergodic parameters ε (blue circles) displayed, for all time
lags, for all the 15 experiments gathered in Figs. 2(c) and 2(d). These
results are all corrected for tracking errors that particularly impact
the data at small time lags, as discussed in details in Appendix F. As
clearly seen, ε(�) follows the evolution expected for an ergodic free
Brownian motion. All ratio ρ(�) = 〈δy2(�)〉/〈y2(�)〉 (red squares)
evaluated for the same experiments remain, as expected, close to 1
for all time lags �. We note that both quantities establish the neces-
sary and sufficient conditions for ergodicity discussed in Ref. [24].

the ergodic parameter,

ε(�) = σ 2
(
δy2

i (�)
)

〈
δy2

i (�)
〉2 =

〈(
δy2

i (�)
)2〉〈

δy2
i (�)

〉2 − 1, (7)

that can be explicitly evaluated for the case of the one-
dimensional free Brownian motion expected to take place in
our experiments along the optical axis y in the dual-beam
mode. The calculation is detailed in Appendix E and leads
to the simple ergodic law,

lim
T /�→∞

ε(�) = 4�

3T . (8)

As shown in Fig. 3, this law is clearly followed by our
data. We stress in Appendix F that apparent deviations of ε

from the ergodic law at short time lags are in fact induced
by tracking errors on displacement measurements. Once these
errors are accounted for, our measurements eventually agree
well with Eq. (8), clearly demonstrating the ergodic nature of
our colloidal dispersion.

VI. RADIATION PRESSURE FORCE MEASUREMENT AND
PROFILE RECONSTRUCTION

White noise stationarity and ergodicity ensure that Eq. (3)
is experimentally valid for our system. It can therefore be
evaluated by collecting all displacements in order to perform
the ensemble averages. Because radiation pressure is deter-
mined by fixed laser intensities, and therefore constant in
time, 〈F (yi, zi, tk )〉 = 〈F (yi, zi )〉 in Eq. (3). In addition, the
Rayleigh range of our Gaussian illumination mode is large
compared with the imaging region-of-interest. This gives a ra-
diation pressure force field invariant along the y axis and only
dependent on z with an expected Gaussian profile centered on
a maximal force F0,

Fy(z) = F0 exp

[
−2(z − z0)2

w2
0

]
, (9)

063816-4



SUBFEMTONEWTON FORCE FIELDS MEASURED WITH … PHYSICAL REVIEW A 100, 063816 (2019)

where the central position z0 of the laser beam and its waist
w0 are determined optically with a high level of precision
(see below). Under such conditions, 〈F (yi, zi )〉 can be eval-
uated as an average performed on the successive z positions
that all diffusing colloids cross within the laser beam while
being pushed along the y axis. Experimentally therefore, we
record the (y, z) positions of each colloid simultaneously and
build two statistical ensembles gathering, one, the successive
nth �yn = yn+1 − yn displacements measured along the y axis,
and the other, the corresponding zn positions of the colloids on
the z axis recorded for the �yn displacement. We will note N
the total number of such displacements available from all the
trajectories and at all times in one experiment.

Two such statistical ensembles give the possibility to esti-
mate the maximal force F0 from the agreement between the
ensemble averages performed respectively over the {zn} and
{�yn} ensembles,

F0

〈
exp

(
−2(zn − z0)2

w2
0

)〉
≡ γ

�t
〈�yn〉. (10)

The estimators of F0 evaluated for different laser intensities
in the single-beam configuration are presented in Fig. 4(a),
including ±δF0 error bars associated with the different sources
of errors described in detail in the Appendix G. The results,
linearly dependent on the laser intensity, are in good agree-
ment with radiation pressure force values expected from a Mie
calculation [25].

Once the estimator F0 is determined, the full force profile
Eq. (9) can be reconstructed, as shown in Fig. 4(b) for a
given laser intensity. Associated uncertainties here include the
residual errors in determining optically the (z0,w0) values.
The waist w0 is measured by imaging, with a camera facing
the laser, the transverse intensity of the laser beam. Analyzing
the profile with a Gaussian model, the waist value (65 μm)
is estimated with a relative error of 4.9%. The beam center
z0 is determined by superposing all the frames (gathering
∼3 × 106 fluorescent spots) from all the experiments, by
analyzing the upper and lower limits and the distribution of
all points in the imaging field of view, leading to estimate the
center position z0 with a relative error of 0.2%.

A force resolution level of our thermally limited system can
be derived, for each experiment providing N displacements, as
the minimal measurable force

〈F 〉min = m
γ

�t
σ (〈�yn〉), (11)

where m fixes the confidence level chosen, and σ (〈�yn〉) =
σ (�yn)/

√
N is the standard error evaluated from the standard

deviation σ (�yn) of the displacement ensemble {�yn}. This
variance can be evaluated directly from Eq. (2) in the absence
of any force field as

σ (�yn) =
√

2kBT �t

γ
, (12)

giving a resolution level of our force measurement as

〈F 〉min =
√

2kBT γ
m√
N�t

. (13)

As clear from this relation, the resolution can be improved
by increasing the size of the statistical ensemble (i.e., the

FIG. 4. (a) Maximal radiation pressure force estimator
F0 evaluated as a function of different laser intensities in
the single-beam configuration of the experiment sketched in
Fig. 1. The estimators (blue points) show the expected linear
dependence on the laser power and the continuous black line is
a linear fitting performed as a reference. The error bars on the
estimators are discussed in Appendix G. The Mie calculation
(red line) done for the conditions of the experiment (plane
wave approximation, spherical dielectric -melamine- particles)
is also shown, with its uncertainty (light red surface) detailed in
Appendix H. The blue surfaces centered around the F0 = 0 value
display the thermal limit at 1, 2, and 3 successive confidence
levels. Each experiment corresponds to a given N value (N =
418 408, 418 555, 360 323, 393 992, 332 772, 275 906, 554 426 for
increasing laser intensities), hence a given thermal limit in the force
detection. (b) With the estimator F0, the entire radiation pressure
force profile can be reconstructed. A Fy(z) profile is shown as an
example, corresponding to a 0.18 kW cm−2 laser intensity (i.e.,
15 mW total laser power). The blue surface describes the uncertainty
associated with the force profile reconstruction—see main text.

number N of displacements) within the thermal, station-
ary, and ergodic limits set in Appendix B. For our experi-
ments, the thermally limited force sensitivity is

√
2kBT γ �

8.56 N/
√

Hz. Within such limits, a typical experiment lasts
ca. 10 min and yields N ∼ 3 × 105 successive displacements,
which corresponds to a remarkable ∼0.3 fN resolution level
(within a m = 3, i.e. 99.7%, confidence level). Such levels
of resolution are displayed in Fig. 4(a) and they vary just
as N depends on the experiment performed at a given laser
intensity. These data clearly show that in the low laser power
regime, radiation pressure can be determined down to the
thermal limit, with a ∼0.5 fN force actually measured at a
99.7% confidence level.
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FIG. 5. Radiation pressure forces measured zone-by-zone (in
successive layers of identical thicknesses 18.4 μm corresponding to
the horizontal widths of all error bars) along the y optical axis for
a laser intensity of 0.31 kW/cm2—corresponding to a total laser
power of 25 mW. These measurements, together with their associated
error bars—following the analysis presented in Appendix G— are
compared to the reconstructed profile using our statistical ensemble
approach (blue line) including uncertainties (blue surface) and Mie
calculations (red line). The number statistics for each layer of data
(from left to right: 8 633, 17 785, 41 573, 45 241, 51 718, 67 707,
and 43 249 recorded displacements) impacts the resolution, as clearly
seen from the variable vertical widths of the corresponding error bars.

Finally, we exploit the fact that video-tracking microscopy
also gives the possibility to measure the external optical force
field directly within limited horizontal layers chosen from
both sides of the optical axis of the illumination beam. We
define 18.4-μm-thick layers at given z positions and within
which we collect all displacements along the y direction.
We use again Eq. (3) inside such selected layers to give a
measurement of the average radiation pressure force zone-by-
zone. The results are reported in Fig. 5 and fall in very good
agreement with the reconstruction method.

VII. CONCLUSIONS

Our results demonstrate that colloidal dispersions can be
used as highly sensitive Brownian probes for measuring ex-
ternal force fields. Because such systems remain thermally
limited, with stationary and ergodic dynamics, large statisti-
cal ensembles mixing particle displacements recorded from
different trajectories and times become available and thus
make sub-fN force resolution levels accessible. The main
experimental uncertainty stems in our work from the parti-
cle size dispersion in the colloidal dispersion commercially
available. But this source of systematic error could be re-
duced working with better monodisperse colloidal disper-
sions. Our method of statistical reconstruction of the force
profile, here demonstrated in two-dimensions for a noncon-
servative optical force field, can obviously be extended in
three-dimensions, involving efficient and available techniques
in three-dimensional tracking [26,27]. Validating colloidal
systems for ultrasensitive force detection strategies, our work
opens interesting perspectives. For instance, colloids can be
involved in reconstructing complex topological force fields,
in particular in the near field where momentum exchanges
are enhanced by near-field inhomogeneities [5,8]. As recently

proposed, colloidal systems can also become pertinent tools
for weak force measurements in the context of Casimir
physics [28]. The advent of nano- and microstructured and
functionalized colloids [29–31] can lead to new types of
dynamical responses to external fields, as exemplified with
chiral optical forces [32–37]. The outstanding stability of the
statistical properties of our system offers new possibilities
for deciphering nontrivial force fields at a genuine sub-fN
resolution level. We finally stress that our approach is also
relevant for weak force experiments that do not necessarily
involve optical fields, experiments found for instance in the
burgeoning field of mechanical chiral resolution [38].
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APPENDIX A: SAMPLE PREPARATION

The samples are prepared from an initial dispersion (2.5%
mass-volume ratio) of melamine microparticles of diameter
d = 0.940 ± 0.05 μm purchased from microParticles GmbH,
weakly doped with a fluorescent dye for a most efficient
detection in water. We dilute the dispersion ∼104× with
ultrapure water and fill a cuvette with the colloidal disper-
sion to ca. 10−6 low-volume fraction. The dimensions of the
cuvette—see Fig. 1 in the main text—are large enough so
that within imaging region-of-interests, boundary wall effects
can be safely neglected. The filled cuvette is covered and
sealed with vacuum grease to prevent water evaporation and
to isolate the fluid from other environmental influence. In
particular, great care is taken for avoiding any contamination
of the dispersion by external impurities. The cuvette and its
cover are exposed at least 1 h to UV light to ensure the absence
of any bacterial contaminant. The sample is grounded to
remove any electrostatic charge on the surface of the cuvette.
Before performing our experiments, we leave for about 1 h
the sample relaxing in its holder until well thermalized with
the environment. This also ensures that potential colloidal
aggregates have sedimented at the bottom of the cuvette.

One sees in our system some convective drag effects at
play, induced by the illuminating laser depending on its in-
tensity. These effects can be simply understood. When the
laser is turned on, the water is heated. Although this effect is
minute, it is sufficient for reducing the density of water within
the laser beam. As a consequence, buoyancy driven flows are
induced that can eventually drag the particles upwards at the
highest laser intensities. This is what is seen, for instance, in
Fig. 1(c), where the convection induced at high laser intensity
drags the melamine spheres against sedimentation. The large
dimensions of the cuvette ensure that such a convective drag
is strictly laminar and performed along the z > 0 axis. In
such conditions, both sedimentation and convective effects are
perfectly decoupled from the diffusive dynamics performed
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on the optical y axis, along which external force fields are
measured.

It is interesting to note that for smaller laser intensities,
the drag resulting from sedimentation and convection is di-
rected downwards. This means that it is actually possible
to find a condition of illumination where sedimentation and
convective drags can compensate each other. In the dual-
beam illumination mode, this condition corresponds to a laser
intensity of 0.148 kW/cm2 in each beam. Remarkably then,
the Brownian motion of the ensemble becomes totally free in
three dimensions within the imaging field of view.

APPENDIX B: ALLAN VARIANCE ANALYSIS
OF THE NOISE

The Allan variance is a statistical tool particularly relevant
for quantifying noise sources because of its direct relation
with noise power spectral densities [22,39]. It has recently
been used in the context of optical trapping to assess limits
of stability of traps and to provide optimal measurement
bandwidths [10,40,41].

We first explain how the Allan variance is measured in
our experiments, performed in the dual-beam mode with two
laser beams of equal intensity illuminating the dispersion.
This leads to a precise compensation of external radiation
pressure forces—i.e., to free Brownian motion along the y
axis, described by the simple Langevin equation

�yi(tk ) =
√

2kBT �t

γ
wi(tk ), (B1)

only driven by the noise wi(tk ). In such conditions, the succes-
sive displacements �yi(tk ) recorded from all the trajectories
(over the shortest observation time lag �t) are concatenated
one-by-one to form a single time series 
(τ ) of displacements
with a total time T = N�t > τ .

The Allan variance,

σ 2(τ ) = 1
2 〈�


2
(τ )〉, (B2)

is calculated on this long time series using successive and
nonoverlapping series of shorter duration τ with �
(τ ) =

k+n(τ ) − 
k (τ ) and for which time-average values 
k (τ )
of 
(τ ) are defined as


k (τ ) = 1

τ

∫ tk+τ

tk


(t ′)dt ′, (B3)

with tk = k�t and τ = n�t . In Eq. (B2), 〈· · · 〉 defines an
average performed over all accessible series, implying that
n < N/2 and k � N − 2n. The Allan variance is then explic-
itly calculated as

σ 2(τ ) = 1

2(N − 2n)

N−2n∑
k=1

[
k+n(τ ) − 
k (τ )]2. (B4)

The connection to noise power spectral density can be seen
by defining an intermediate estimator θ ,

θ (τ ) =
∫ τ

0

(t ′)dt ′, (B5)

that corresponds in Ref. [22] to instantaneous phase fluctua-
tions for 
(τ ) associated to instantaneous frequency fluctua-
tions. With this estimator, the Allan variance can be written as

σ 2(τ ) = 1

2τ 2
〈{θ [(k + 2)τ ] − 2θ [(k + 1)τ ] + θ [kτ ]}2〉,

(B6)
which gives a sum of different covariance function Cθ (�) =
〈θ (τ + �)θ (τ )〉 related to a power spectrum density (PSD) as

Cθ (�) = 1

2π

∫ +∞

−∞
Sθ (ω)eiω�dω. (B7)

Equation (B6) can thus be simply expressed as

σ 2(τ ) = 1

4πτ 2

∫ +∞

−∞
dωSθ (ω)[6 − 2(eiωτ + e−iωτ )

+ (e2iωτ + e−2iωτ ) − 2(eiωτ + e−iωτ )]

= 1

4πτ 2

∫ +∞

−∞
dωSθ (ω)[6 − 8 cos(ωτ ) + 2 cos(2ωτ )]

= 4

πτ 2

∫ +∞

−∞
dωSθ (ω) sin4

(ωτ

2

)
. (B8)

Considering the relation ω2Sθ (ω) = S
(ω) between the PSD
of the noise and the PSD of its estimator, we have

σ 2(τ ) = 4

πτ 2

∫ +∞

−∞

dω

ω2
S
(ω) sin4

(ωτ

2

)
, (B9)

as the important relation that shows why the Allan variance is
an appropriate tool for quantifying all kind of noise sources
characterized by their respective PSD.

Let us evaluate the Allan variance for the case of a white
noise 
(t ) = w(t ) characterized by the well-known covari-
ance 〈w(t )w(0)〉 = h0δ(t ) and the associated PSD Sw(ω) =
h0. For such a PSD, we can directly evaluate Eq. (B9) to
find that σ 2(τ ) = h0

τ
. For the thermal white noise driving our

experiments, h0 = 2kBT/γ , leading to

σ (τ ) =
√

2kBT

γ τ
. (B10)

This type of Allan standard deviation is clearly verified in
our experiments (Fig. 2(a), main text) with a linear evolution
observed in the log-log scale with a −1/2 slope and an
amplitude fixed to

√
2kBT/γ at τ = 1 s.

Experimentally, the Allan standard deviation is calculated
from a discretized version of the estimator,

θk = �t
k∑

j=1


 j, (B11)

where θk = θ (k�t ) and 
 j = 
( j�t ). The time averages
of 
—Eq.(B3)—performed over the temporal length of the
trajectory τ = n�t for two successive and nonoverlapping
displacement samples, are then simply expressed as


k (τ ) = θk+n − θk

τ
, (B12)


k+n(τ ) = θk+2n − θk+n

τ
. (B13)
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Following Eq. (B4), we therefore calculate the Allan variance
as

σ 2(τ ) = 1

2(N − 2n)τ 2

N−2n∑
k=1

(θk+2n − 2θk+n + θk )2. (B14)

APPENDIX C: TRACKING ERROR DATA CORRECTION

As discussed in Ref. [42], recording the trajectory of a
diffusing particle under the microscope is accompanied by
tracking errors that can affect the Brownian statistical anal-
ysis. Such errors combine localization errors for single-shot
positional measurements and blurring effects caused by the
finite exposure time tE of such a measurement over which
the particle keeps diffusing with a diffusion coefficient D.
For free Brownian motion, the one-dimensional time-average
MSD acquired along a given axis (the y axis, following our
experimental setup) has therefore to be corrected. To include
these effects, the MSD writes as

〈δy2(�)〉 = 2D

(
� − tE

3

)
+ 2σ 2, (C1)

where tE is the exposure time of the camera and σ is the
dynamic localization error [42]. This error,

σ = σ0

(
1 + DtE

s2
0

)1/2

, (C2)

is related to the static localization error σ0 and the full-width at
half maximum s0 of the Gaussian profile used to approximate
the microscope point-spread function.

For our experimental setup, we have σ0 ∼ 15 nm and
s0 ∼ 1.5 μm, extending over 3 pixels of the CCD camera. Our
exposure time is fixed at tE = 7 ms. Using the expected value
of D in water at room temperature for a particle of diameter
940 nm, these values imply that s2

0 � DtE , so that σ ∼ σ0.

Therefore, the single-particle time-average MSD δy2
i (�)exp

experimentally acquired,

δy2
i (�)exp = δy2

i (�)0 + εi, (C3)

departs from the real MSD δy2
i (�)0 by a random localization

error εi. At the level of a colloidal dispersion, we perform an
additional ensemble averaging giving〈

δy2
i (�)

〉
exp = 〈

δy2
i (�)

〉
0 + b, (C4)

with 〈δy2
i (�)〉0 = 2D� and b = 〈εi〉 = 2σ 2

0 − 2DtE/3.
Within our experimental conditions, this error parameter is
estimated to be b ∼ −2.6 × 10−3 μm2, negative as expected
by looking at the experimental MSD data point at small � in
Fig. 2(c).

Such corrections impact the determination of the experi-
mental MSD under an external force field, hence the diffusion
coefficient, and the determination of the ergodicity parameter
ε that can give, if not corrected, the impression to display sig-
natures of ergodicity breaking at short timescales, as discussed
in Appendix F in detail.

We can also get an estimate of the tracking error by linearly
fitting the 15 experimental time ensemble average MSD. We
obtain an average error parameter bfit ∼ −2.8 × 10−3 μm2

FIG. 6. (a) Diffusion coefficients Dr measured along the r = y
(blue points) and r = z (red points) axes for different laser in-
tensities. The value of the diffusion coefficient expected from a
fixed temperature (measured on average at T = 302.2 K), viscosity
(η = 0.8145 × 10−3 Kg m−1 s−1), and particle diameter (d = 940
nm) is also displayed (black continuous line) with a light-gray
surface including errors in the determination of temperature (δT =
±1 K), viscosity (δη = ±0.018 × 10−3 Kg m−1 s−1 due to δT ),
and particle size dispersion (δd = ±50 nm). The error bars on
the experimental determinations of Dy and Dz are given at a 95%
confidence level from the linear regression taken on the variances
of the displacement σ 2[y(� + t ) − y(t )] along y, and σ 2[z(� + t ) −
z(t )] along z, respectively. These variances are shown on (b), noting
σ 2

r (�) = σ 2[r(� + t ) − r(t )] with r = y (blue triangles) and r = z
(red squares). These variances, plotted as function of time lag �,
are calculated for seven experiments done under the different laser
intensities shown on panel (a).

including a standard deviation of ∼0.4 × 10−3 μm2, showing
that bfit is in good agreement with the estimated value b.

APPENDIX D: DETERMINATION OF DIFFUSION
COEFFICIENTS

Determining diffusion coefficients is central to our exper-
iments since it allows us to extract a value for the Stokes
friction drag γ once the temperature of the system is known.
Under an external force field, the diffusion coefficient is
related to the experimental variance,

σ 2[r(� + t ) − r(t )] = 2D� + b, (D1)

given by the statistical ensemble of displacements measured
along one r axis with a time difference �, including the
tracking error b discussed above in Eq. (C4).

This variance can be calculated from the difference be-
tween the experimental time ensemble average MSD and the
square of the mean displacement measured over � as

σ 2[r(� + t ) − r(t )] = 〈
δr2

i (�)
〉 − 〈r(� + t ) − r(t )〉2,

(D2)

where one recovers on 〈δr2
i (�)〉 the ballistic contribution of

the external force field.
Fitting the variance respectively in the y and z directions

with a chosen time lag � measures the diffusion coefficients
Dy and Dz. The results are shown in Fig. 6 for different
illumination powers, hence different strengths of radiation
pressure exerted along the y axis. The results clearly show that
Dy ∼ Dz and that they fall in good agreement, within error
bars (see caption), with the theoretical value of the diffusion
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coefficient D = kBT/γ expected with a measured temperature
T = 302.2 K and a Stokes friction drag γ evaluated from the
corresponding viscosity of water and the known diameter of
the colloidal sphere. This result is important since it provides
a valid value (including uncertainties) for the Stokes friction
drag, necessary in Eq. (3) for converting measured spatial
displacements into force strengths within well determined
confidence intervals.

APPENDIX E: ERGODICITY FOR FREE
BROWNIAN MOTION

We here consider a one-dimensional free Brownian mo-
tion x(t ) described, in the overdamped limit, by the simple
Langevin equation:

ẋ(t ) = U (t ), (E1)

where U (t ) corresponds to a thermal noise with 〈U (t )〉 = 0
and 〈U (t1)U (t2)〉 = 2kBT

γ
δ(t1 − t2), where kB is the Boltzmann

constant, T the temperature of the noise, and γ the Stokes
friction drag acting on the Brownian object considered. The
ensemble average 〈· · · 〉 is done over all the realizations of the
stochastic variable. Having

δx(t ) = x(t ) − x(0) =
∫ t

0
dx(t ) =

∫ t

0
U (t ′)dt ′, (E2)

and setting x(0) = 0, the MSD is given by the Einstein equa-
tion:

〈x(t )2〉 = 2kBT

γ
t = 2Dt . (E3)

The position correlation function Cx(t1, t2) can then be calcu-
lated:

Cx(t1, t2) = 〈x(t1)x(t2)〉. (E4)

If we suppose that t2 > t1, then

〈x(t1)x(t2)〉 = 〈x(t1) · [x(t1) + (x(t2) − x(t1))]〉
= 〈x(t1)2〉 + 〈x(t1) · (x(t2) − x(t1))〉

= 2Dt1 +
〈∫ t1

0
U (t )dt

∫ t2

t1

U (t )dt

〉
= 2Dt1, (E5)

since the two integrals do not overlap.
Similarly, if t1 > t2, then Cx(t1, t2) = 2Dt2. Both cases can

be described in a unified manner with

Cx(t1, t2) = 〈x(t1)x(t2)〉 = 2D min[t1, t2]

= D(t1 + t2 − |t1 − t2|). (E6)

We now calculate explicitly the ergodic parameter ε de-
fined in Eq. (7) in the main text. First, we remind that
〈x(�)2〉 = 〈δx2(�)〉 where δx2(�) is the time-average MSD
taken over the duration T ,

δx2(�) = 1

T − �

∫ T −�

0
[xi(t

′ + �) − xi(t
′)]2dt ′, (E7)

and 〈δx2(�)〉 = 2D� the corresponding ensemble average
performed over all available δx2(�).

The ergodic parameter ε is built on the variance of time-

average MSD σ 2[δx2(�)] = 〈δx2(�)
2〉 − 〈δx2(�)〉2. Look-

ing at

〈δx2(�)
2〉 = 1

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2

×〈[x(t1 + �) − x(t1)]2[x(t2 + �) − x(t2)]2〉,
(E8)

we will use Wick’s relation for normally distributed ensem-
bles of displacements:

〈x(t1)x(t2)x(t3)x(t4)〉
= 〈x(t1)x(t2)〉〈x(t3)x(t4)〉 + 〈x(t1)x(t3)〉〈x(t2)x(t4)〉

+〈x(t1)x(t4)〉〈x(t2)x(t3)〉. (E9)

Using Eqs. (E3) and (E6), one gets

〈[x(t1 + �) − x(t1)]2[x(t2 + �) − x(t2)]2〉
= 〈[x(t1 + �) − x(t1)]2〉〈[x(t2 + �) − x(t2)]2〉

+ 2〈[x(t1 + �) − x(t1)][x(t2 + �) − x(t2)]〉2

= 4D2�2 + 2D2α2, (E10)

with

α = |t1 − t2 + �| + |t1 − t2 − �| − 2|t1 − t2|. (E11)

The term 4D2�2 is canceled in the variance by 〈δx2(�)〉2 and
one is therefore left to calculate

σ 2(δx2(�)) = 2D2

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2 α2. (E12)

To do so, we use the change of variables described in Fig. 7
that splits the integration over the two distinct sectors t2 < t1
and t2 > t1. For the t2 < t1 sector, we have∫ 0

−(T −�)
dt ′

∫ T −�

−t ′
dt1(� − t ′ + |t ′ + �| + 2t ′)2, (E13)

and for the t2 > t1 sector,∫ T −�

0
dt ′

∫ T −�−t ′

0
dt1(|t ′ − �| + t ′ + � − 2t ′)2. (E14)

FIG. 7. Integration surface for Eq. (E12) on which the two
sectors [t2 > t1] and [t2 < t1] are distinguished. This defines the
appropriate change of variables (t1, t2) ↔ (t1, t ′), with the line t2 =
t1 + t ′ crossing the t2 = 0 axis at −t ′ and the t2 = T − � axis at
T − � + t ′.
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The absolute value integrands are finally evaluated using a last
change of variable v = t ′ + � on Eq. (E13) and w = t ′ − �

on Eq. (E14) that restricts the integration to v > 0 and w < 0
values, and eventually leads to∫ T −�

0
dt1

∫ T −�

0
dt2 α2

=
∫ �

0
dv4v2(T + v − 2�) +

∫ 0

−�

dw4w2(T − w − 2�).

(E15)

In the long-time limit T /� → ∞,

T + v − 2� ∼ T − w − 2� ∼ T ,

1

(T − �)2
∼ 1

T 2
, (E16)

so that Eq. (E12) simplifies to

2D2

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2 α2 ∼ 16D2�3

3T . (E17)

The ergodic parameter ε = σ 2[δx2(�)]/〈δx2(�)〉2 then
simply writes in the long-time limit as

lim
T /�→∞

ε(�) =
16D2

3T �3

4D2�2
= 4�

3T . (E18)

This scaling is discussed already in Ref. [24] as a sufficient
condition for ergodicity. As we demonstrate in the main text,
this scaling is clearly verified in our experiments, proving the
ergodic character of our colloidal system.

APPENDIX F: CORRECTING THE ERGODIC
PARAMETER FROM TRACKING ERRORS

With such tracking-error corrections, we can give a relation
between the experimentally estimated ergodicity parameter
ε(�)exp and the real one ε(�)0, starting from the definition
of the ergodic parameter that involves the MSD according to

ε(�)exp =
〈[
δy2

i (�)0 + εi
]2〉〈

δy2
i (�)

〉2
exp

− 1. (F1)

Defining the ratio

φ =
〈
δy2

i (�)
〉
0〈

δy2
i (�)

〉
exp

(F2)

which, from Eq. (C4), can be written as a function of �:

φ(�) = 1

1 + b/2D�
, (F3)

allowing us to rewrite Eq. (F1) as:

ε(�)exp = φ2ε(�)0 + (φ2 − 1) + 2
〈
εiδy2

i (�)0

〉 + 〈
ε2

i

〉
〈
δy2

i (�)
〉2
0

φ2.

(F4)

FIG. 8. Comparison between ergodic parameters ε before
[εexp(�), red triangles] and after correction [ε0(�), blue circles],
revealing a clear difference at small time lags � but almost none for
larger �. The superimposed dashed line corresponds to the ergodic
long-time limit of free Brownian motion calculated in Appendix E.
These data correspond to the lowest intensity (0.006 kW/cm2)
experiment shown in Fig. 2(c).

Assuming that εi and δy2
i (�)0 are not correlated leads to

〈εiδy2
i (�)0〉 = b〈δy2

i (�)0〉, so that:

ε(�)exp = φ2

[
ε(�)0 + σ 2(εi )

(2D�)2

]
, (F5)

considering that:

〈
ε2

i

〉 = 〈εi〉2 + σ 2(εi ) = b2 + σ 2(εi ). (F6)

This relation has an important consequence when dis-
cussing the time evolution of the ergodic parameter ε. Indeed,
as seen from Eq. (F5), for sufficiently large time lags � � �t
with respect to the sampling time, the error term vanishes
as φ → 1. In such conditions, ε(�)exp ∼ ε(�)0. But when
evaluating ε in the regime of small time lags with � ∼ �t , the
experimental result ε(�)exp turns out to be larger than ε(�)0

precisely because of the influence of the tracking errors, as
seen in Fig. 8. What can be taken for the signature of some
breaking of ergodicity at small time lags is, in this case, an
artefact of the experiment which is simply accounted for using
Eq. (F5).

To evaluate Eq. (F5) as presented in Fig. 2(b) in the main
text, we estimate φ using Eq. (F3) and evaluate σ 2(εi ) in
two steps. First, we assume that δy2

i (�)exp and δy2
i (�)0 are

uncorrelated, so that according to Eq. (C3),

σ 2(εi ) = σ 2
[
δy2

i (�)exp

] + σ 2
[
δy2

i (�)0

]
. (F7)

We then take Eq. (7) in the smallest �∼ �t limit, for which
σ 2[δy2

i (�t )0] ∼ 〈δy2
i (�t )0〉2×4�t/3T ∼ (�t )2/T ∼ 0 con-

sidering that 〈δy2
i (�)0〉2 = 2D�t . This leads eventually to

σ 2(εi ) ∼ σ 2
[
δy2

i (�t )exp

]
. (F8)
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APPENDIX G: RADIATION PRESSURE FORCE
UNCERTAINTY

The global uncertainty related to a radiation pressure force
measurement F0 involves different sources of errors: (i) of
systematic nature regarding the determination of the colloidal
particle size, the temperature (hence viscosity) of water and
the laser beam waist w0 and center z0, and (ii) of statistical
nature related to the standard error associated with the ensem-
ble averaging of the displacement distribution. These different
errors combine in a global uncertainty as

δF0 =
∑

u

(δF0)u =
∑

u

∣∣∣∣∂F0

∂u

∣∣∣∣δu. (G1)

From Eq. (10), we know that the F0 can be written as

F0 = 1

α

γ

�t
〈�yn〉, (G2)

where α = 〈exp [−2(zn − z0)2/w2
0]〉. The error on α comes

from the determination error of z0 and w0, which yields a
relative error of ϕα = δα/α ∼ 0.4%. Within the Stokes drag
term γ = 6πηa, both systematic errors are at play. The ±1 K
error on temperature around a mean value of 302.2 K leads
to a relative error in the viscosity ϕη ∼ 2.4%, and the 50 nm
standard deviation in particle size given by the manufacturer
corresponds to a relative error in particle diameter of ϕd ∼
5.3%. The standard error in the displacement distribution is
calculated from the ensemble of {�yn}, so that, using the
maximum error estimation method, the uncertainty writes as

follows:

δF0 = (δF0)α + (δF0)η + (δF0)d + (δF0)〈�yn〉

= F0(ϕα + ϕη + ϕd ) + γ

α�t

σ (�yn)√
N

, (G3)

where σ (�yn) is the sample standard deviation defined as

σ (�yn) =
√∑

n(�yn − 〈�yn〉)2

N − 1
. (G4)

APPENDIX H: MIE CALCULATION UNCERTAINTY

Following Ref. [25], radiation pressure forces are calcu-
lated in the Mie regime as Fpr = (nwI/c)Qpr, where nw is the
refractive index of water, I is the intensity of the illuminating
laser, c the velocity of light, and Qpr is the calculated radiation
pressure cross section. Here, the uncertainty comes from the
laser intensity because of inevitable errors made in measuring
(i) the laser intensity, and (ii) the optical waist of the laser
beam inside the cuvette. With I = 2P/πw2

0, the laser intensity
uncertainty is therefore given by

δI = 2

πw2
0

δP + 2
2P

πw3
0

δw0 = 2P

πw2
0

δP

P
+ 2P

πw2
0

2
δw0

w0

= I

(
δP

P
+ 2

δw0

w0

)
. (H1)

In our experiments, we have a relative error in the power
determination of ca. 5% and a relative error in the waist
measurement of ca. 4.9% through the Gaussian fitting of the
intensity profile with 95% confidence level (see main text).
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