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By controlling in real-time the variance of the radiation pressure exerted on an optically trapped microsphere,
we engineer temperature protocols that shortcut thermal relaxation when transferring the microsphere from one
thermal equilibrium state to an other. We identify the entropic footprint of such accelerated transfers and derive
optimal temperature protocols that either minimize the production of entropy for a given transfer duration or
accelerate as much as possible the transfer for a given entropic cost. Optimizing the trade-off yields time-
entropy bounds that put speed limits on thermalization schemes. We further show how optimization expands the
possibilities for accelerating Brownian thermalization down to its fundamental limits. Our approach paves the
way for the design of optimized, finite-time thermodynamic cycles at the mesoscale. It also offers a platform
for investigating fundamental connections between information geometry and finite-time processes.

The time needed for a body to thermalize with its envi-
ronment is a natural constraint for operating many physical
systems and devices. Controlling thermalization has emerged
as one salient challenge at meso and nanoscales scales [1–
5]. At such scales, the methods of stochastic thermodynam-
ics have proven their efficiency, capable of extending the con-
cepts of work, heat and entropy to single, fluctuating systems
[6, 7]. Experimentally, new strategies have recently been im-
plemented on optically trapped Brownian particles to emulate
effective, and thereby controllable, thermal baths [8–12]. The
fine control of the time-dependence of effective temperatures
has led to the definition of thermal protocols and optimized
cycles [13–15]. Exploiting finite-time thermodynamics, these
strategies have also provided the means to circumvent natural
thermalization by proposing accelerated paths that a Brownian
system can be forced to follow [10, 16–21]. Such means form
a major topic of current research in the realm of shortcuts to
adiabaticity [22, 23].

Obviously, speeding-up transitions from one equilibrium
state to another demands to follow non-equilibrium paths that
have a thermodynamic cost. Once such cost evaluated, the
design of protocols that optimize the mutually exclusive re-
lation between the rate of acceleration and the energetic ex-
pense should be possible. There is a variety of approaches
proposed for evaluating that energetic expense [24–30], but
the challenge remains to identify the proper one which makes
it possible to treat duration and cost on an equal footing, the
prerequisite for this optimization [31–33].

In this Letter, we set up a bath engineering strategy involv-
ing radiation pressure to directly control the kinetic temper-
ature of an optically trapped, overdamped, Brownian micro-
sphere [34]. This control allows us to impose abrupt transfers
from one to another equilibrium states, either increasing or
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decreasing the temperature down to a minimum set by room
temperature TR. Such step-like transfers are followed by ther-
mal relaxations measured precisely through the diffusive dy-
namics of the microsphere inside the harmonic optical trap.
Our strategy gives the possibility to accelerate such thermal
relaxation processes by imposing an overshoot in temperature
during the transfer. This leads us to extend to isochoric transi-
tions the Engineered Swift Equilibration (ESE) processes de-
veloped so far for isothermal transitions [35]. We show how
thermal ESE protocols – hereafter named ThESE protocols –
do accelerate thermalization, and demonstrate experimentally
the shortening of the duration of initial-to-final thermal equi-
librium transfers. We further quantify the thermodynamic cost
of this acceleration in terms of entropy production.

The identification of the entropic cost of a thermal shortcut
brings us, in the context of harmonic trapping, to a class of op-
timal thermal protocols, defined as those protocols that speed-
up thermalization while minimizing the associated production
of entropy. The trade-off involved in our optimization proce-
dure sets time-entropy bounds that put speed limits on physi-
cally realizable thermal shortcuts, in a remarkable asymmetry
between heating and cooling protocols. We also demonstrate
that optimal cooling gives access to higher acceleration rates
that are unreachable using standard overshooting, ThESE-
like protocols. These results are finally discussed from an
energetic viewpoint for the three families (step-like, ThESE
and optimized) of state-to-state transitions, which clarifies the
different contributions to the global in-take of heat by the
trapped microsphere under the action of the fluctuating radia-
tion pressure. We also stress that our optimization-under-cost
constraint leads to results that are different from the thermal
brachistochrones recently proposed in [26].

Our experiment consists of a single microsphere trapped
in an optical tweezer and evolving in a harmonic poten-
tial [36, 37]. The microsphere diffuses in water with a Stokes
drag γ = 2.695×10−8 kg/s at room temperature TR = 293K.
The trap is characterized by a stiffness κ = 13.1 ± 0.2
fN/nm and the overdamped diffusion dynamics by a relax-
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ation time τ = γ/κ = 2.06 ± 0.04 ms. As described in
detail in Appendices A and B, an additional radiation pres-
sure is exerted on the sphere by a pushing laser whose in-
tensity I(t) = I0 + δI(t) is digitally controlled over time
by an acousto-optic modulator [34]. When δI(t) is random
(white noise spectrum), this radiation pressure increases the
motional variance of the center-of-mass motion of the sphere
along the optical axis of the trap. By building a statistical
ensemble {j} of 1.7 × 104 diffusing trajectories xj(t), we
extract an ensemble average variance s(t) in direct relation
with the pushing laser intensity variance 〈δI2(t)〉. This ran-
dom forcing of the microsphere can be interpreted as emu-
lating an effective thermal bath whose temperature T (t) can
be set instantaneously in strict relation with the intensity vari-
ance with T (t) ∝ 〈δI2(t)〉. The mechanical response of the
microsphere is measured through the time-evolution of s(t)
according to –see Appendix C:

ds(t)

dt
=

2

τ

(
kBT (t)

κ
− s(t)

)
. (1)

The effective nature of T (t) implies that thermal changes
impact the diffusion coefficient simply likeD(t) = kBT (t)/γ
and the system relaxation time τ remains constant. By thus
transforming temperature into an external control parameter
T (t), the crucial asset of our bath engineering strategy is the
possibility to perform specific temperature protocols that can
be arbitrarily fast from one initial TR + Ti to another final
target temperature TR + Tf . As discussed below, this opens
rich analogies with recent works that have demonstrated how
time-dependent optical trap stiffness protocols κ(t) can lead to
shortcut, engineer and even optimize state-to-state isothermal
processes [33, 35, 38].

Let us start by implementing a sudden, step-like change
∆T = Tf − Ti between an initial TR + Ti to a final TR + Tf
temperature. This STEP protocol is described in the upper
panel of Fig. 1. It produces a transient response of the vari-
ance s(t) that we measure and plot in the lower panel of Fig.
1. As observed in excellent agreement with Eq. (1), the vari-
ance relaxes towards the new thermal equilibrium state with
a relaxation time 2τ . Such a relaxation corresponds to the
definition of natural thermalization, in which the system is
left free to evolve towards a new equilibrium state. We now
show that it is possible to impose a temperature protocol that
displays a much shorter thermalization time for the same ∆T
change. To do so, we extend to temperature the class of ESE
isothermal protocols presented in [35] with a polynomial tem-
perature overshoot evaluated in Appendix E 2, imposing sta-
tionary thermal equilibrium κs(ti,f ) = kB(TR + Ti,f ) and
ṡ(ti,f ) = 0 at the initial and final steps of the process. The
corresponding T (t) protocol is plotted in the upper panel of
Fig. 1 for a chosen transfer duration ∆t = tf − ti = 1.23
ms imposed to be shorter than 2τ with a ratio ∆t/τ = 0.6. It
is implemented experimentally and we measure in the lower
panel of Fig. 1 the time evolution of the system’s variance
s(t) in excellent agreement with the theory.

The central question for such accelerated thermalization
protocols remains their possible optimization with respect to
a well-identified footprint. In the case of isothermal stiffness

FIG. 1. Upper panel: Time evolution T (t) plotted for three cooling
protocols connecting two thermal equilibrium states, one initial at
TR + Ti and one final at TR + Tf where TR = 300 K corresponds
to room temperature and TR + Ti = 2200 K, TR + Tf = 1200 K to
the target temperatures fixed by the laser fluctuation spectrum. The
orange curve corresponds to a step-like protocol (STEP) with a sim-
ple temperature discontinuous quench, the blue curve to the ThESE
protocol through which Ti and Tf are connected by a third degree
polynomial, the green curve to the optimal protocol (Opt) with its
two discontinuities ensuring the connection between the initially hot
and finally cold equilibrium states. Lower panel: Measured time
evolutions (data points with same color coding as in the upper panel)
of the motional variances s(t) induced by the different thermal pro-
tocols starting at ti/τ = 0. The variances for the ThESE and Opt
shortcuts reach equilibrium at a rate ∆t/τ = 0.6, as indicated by the
vertical line. The shaded areas give the experimental errors at a 95%
confidence interval for s(t). The analytical solutions for s(t) for the
three protocols, calculated in Appendix E from Eq. (1), correspond
to the continuous lines drawn on the experimental data points. Inset:
Levels of produced entropy Σgen associated to each of the three pro-
tocols and evaluated using Eq. (2). Error bars for Σgen correspond to
the combination of the uncertainty in s(t), stiffness and temperature
(see more details in Appendix H).

protocols κ(t), the thermodynamic cost of acceleration was
evaluated through the associated work expense and the min-
imization procedure designed accordingly [31–33]. Temper-
ature protocols, in contrast, are entropic by nature and have
been recently characterized using the concept of thermal (en-
tropic) work [5]. This entropic nature clearly appears when
interpreting Eq. (1) thermodynamically: whenever the tem-
perature changes faster than τ , the system will evolve along
an irreversible, non-equilibrium process in which the instan-
taneous variance s(t) will be different from the one expected
by equipartition. The difference between s(t) and kBT (t)/κ
thus measures the deviation from a reversible process and, as
such, is associated to a given production of entropy that we
now evaluate.

For our experiments, we define the system’s stochas-
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tic entropy σsys(xj(t), T (t)) = −kB ln p(xj(t), T (t)) [7]
from an extension of the Boltzmann probability density
p(xj(t), T (t)) =

√
κ/2πkBT (t) exp

(
−κx2

j (t)/(2kBT (t))
)

to non-equilibrium processes that connect two equilibrium
states. Using this definition, the infinitesimal variation of
the system’s entropy is evaluated as dσsys(xj(t), T (t)) =
κxidxj/T (t) + (kBT (t) − κx2

j )dT/(2T
2(t)). The first term

involves the quantity of heat dq = −κxidxj associated with
the change of internal of energy of the system. It corresponds
to (the opposite of) the variation of the entropy of the medium
d̄σmed = dq/T (t) where we use the d̄ notation for non-exact
differentials. The second term, written as dσsys + d̄σmed, thus
gives the infinitesimal amount of total entropy generated along
the elementary path dT –see Appendix D.

The generated total entropy, once ensemble averaged and
cumulated from the initial ti to a given time t of the isochoric
transformation

Σgen(t) =
1

2

∫ t

ti

Ṫ (ζ)

T 2(ζ)
(kBT (ζ)− κs(ζ)) dζ, (2)

directly involves the non-equilibrium nature of the transfor-
mation imprinted in the difference kBT (t)−κs(t) between the
measured variance and equipartition. It therefore corresponds
to the cumulated entropy produced along the irreversible tran-
sition and constitutes the entropic footprint of a finite-time iso-
choric process. For the entire STEP and ThESE protocols, in
which t → ∞ and t = tf respectively, the total entropy pro-
duction can be easily calculated using Eq. (2), and the results
are plotted in the inset of Fig. 1. When compared, these val-
ues reveal in a striking manner the entropic cost of thermal
acceleration with ΣThESE

gen > ΣSTEP
gen .

Our analysis now gives the possibility to derive the actual
temporal profile of an optimal protocol that minimizes this
entropic cost for a given choice of transfer duration ∆t = tf−
ti from one equilibrium state at TR+Ti to another at TR+Tf .
In close relation with our previous work [33], we express the
transfer duration as a functional of the variance according to
Eq. (1) and integrate by parts the generated entropy (2) –see
Appendix E 3– to build a functional

J [T (s)] =

∫ sf

si

(
γ

kBT (s)− sκ
− λ κ

kBT (s)

)
ds. (3)

This combines on an equal footing the transfer duration and
the corresponding generation of entropy with a Lagrange mul-
tiplier λ to regulate the trade-off between the two quanti-
ties. The optimization procedure consists in searching for the
paths in the [s, T (s)] space that minimize J [T (s)] while keep-
ing the same initial and final equilibrium conditions imposed
by the equipartition theorem, just like for the ThESE proto-
col. As explained in Appendix E, the procedure yields two
families of optimized thermal protocols Theat/cool(s) associ-
ated respectively to heating Ti < Tf and cooling Ti > Tf .
We emphasize that the Theat/cool(s) protocol does not sat-
isfy thermal equilibrium at both initial and final times and
must be therefore supplemented by two discontinuous tran-
sitions, just like in the case of optimal isothermal processes
[31, 33]. During the interval ∆t, those two solutions cor-
respond to an exponential evolution of the variance with

sopt(t) = si((TR + Tf )/(TR + Ti))
(t−ti)/∆t . It is remark-

able that both Theat/cool(s) protocols can be described with a
single expression

Topt(t) =
κs(t)

kB

(
1 +

τ

kB

∆Σsys

∆t

)
(4)

with ∆Σsys = kB ln[(TR + Tf )/(TR + Ti)]/2 the protocol-
independent total variation in the system’s entropy. This
expression is plotted in the upper panel of Fig. 1 for an
optimal cooling protocol and with the same shortening rate
∆t/τ = 0.6 as the ThESE protocol discussed above. As one
expected important result of our work, ΣThESE

gen > Σopt
gen.

The optimal protocol given by Eq. (4) together with sopt(t)
injected into Eq. (2) lead to evaluate the minimal entropy pro-
duced through an isochoric transformation of duration ∆t as

Σmin =
∆Σsys

1 + kB
τ

∆t
∆Σsys

, (5)

an expression valid both for cooling and heating protocols but
with different consequences, as discussed below.

In Fig. 2, we first plot Eq. (5) for cooling (upper panel) and
heating (lower panel) optimal protocols (solid black lines).
The curves draw exclusion regions for entropy production that
correspond to the minimal amount of entropy that can be gen-
erated in an isochore for a given ∆t: they thus correspond
to optimal time-entropy bounds. Our experimental results
obtained for different optimal cooling and heating protocols
Topt(t) injected within our optical trap (same set of tempera-
tures but different transfer durations) all precisely fall on the
expected bounds.

For a cooling process with ∆Σsys < 0, Eq. (5) also puts
an asymptotic limit to the transfer rate with a minimal transfer
duration of ∆tmin/τ = −∆Σsys/kB. These bounds on the
dynamical evolution of our system, extracted from the trade-
off involved in the optimization procedure between the trans-
fer duration and the production of entropy, must be considered
as true speed limits on the state-to-state connection [39]. They
are directly associated with a divergence in the entropic cost
as clearly seen experimentally in Fig. 2 for the shortest trans-
fer rate that we probed (vertical dashed line). This limit in the
cooling acceleration is directly related to the fact that the low-
est temperature Tmin = Topt(t

−
f ) = Tf (1 + τ

kB

∆Σsys

∆t ) which
the optimal protocol passes through, cannot be smaller than 0

K, a temperature limit reached when ∆tmin/τ = −∆Σsys

kB
=

0.3 for our (Ti, Tf ) choice. However, experimentally we
necessarily have Tmin ≥ TR and for the case presented in
Fig. 2, this implies that the shortest transfer rate reachable is
∆tmin/τ =

∆Σsys

kB(1−TR/Tf ) ' 0.4.
Room temperature obviously bounds from below all over-

shoot temperatures that can be physically hit. This leads to an
interesting consequence when comparing optimal and ThESE
cooling protocols for identical shortening rates and target tem-
peratures Ti > Tf . Because the overshoot temperature for the
ThESE protocol is necessarily lower than Tmin for the opti-
mal protocol for a given ∆t –see Fig. 1 (upper panel)– the
room temperature bound is reached by the ThESE protocol
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before the optimal one. More precisely, the ThESE protocol
cannot accelerate cooling beyond ∆t/τ = 0.6, while remark-
ably and as perfectly measured, the optimal protocols can still
have access to stronger acceleration rates with ratios between
∆t/τ = 0.6 and 0.4 that remain available experimentally.
This important result reveals another, yet unexpected, ther-
modynamic advantage of optimization giving access to time-
entropy regions that are simply forbidden to non-optimized
protocols.

FIG. 2. Minimal time-entropy bound (solid black lines) correspond-
ing to an optimal (TR + Ti = 2200K, TR + Tf = 1200K) cool-
ing process (upper panel) and heating protocols performed between
TR + Ti = 350 K to TR + Tf = 1100 K (lower panel). The gray
hatched region are forbidden to any acceleration method. Experi-
mental measurements for optimal protocols are shown with green
open circles and with blue open squares for ThESE protocols. Er-
ror bars correspond to experimental errors propagated through Eq.
(2) at a 95% confidence level. The fundamental limit put on ThESE
cooling protocols set at ∆t/τ = 0.6 for the chosen experimental
parameters is depicted as a second exclusion region (blue hatched
region) for such overshooting temperature protocols.

Contrasting with cooling, optimal heating protocols are not
constrained by any fundamental limit (Fig. 2, lower panel).
With ∆Σsys > 0 in Eq. (5), the production of entropy does
not diverge and the system can be forced to thermalize arbi-
trarily fast. The optimal time-entropy bound for heating pro-
tocols is plotted in Fig. 2 together with the experimental mea-
surements obtained when implementing heating ThESE and
optimal protocols.

We finally measure the instantaneous, ensemble average,
heat generated by the action of the radiation pressure d̄Qgen =
−T (t)dΣgen and transferred to the microsphere while evolv-
ing from the initial state s(ti) to one non-equilibrium state
s(t) [40]. The time-dependent cumulative in-take of heat for
isochores can be evaluated directly from Eq. (2) as Qgen(t) =

−
∫ t
ti
dt′Ṫ (t′)[kBT (t′) − κs(t′)]/(2T (t′)). This quantity of

heat is plotted in Fig. 3 for the three families of protocols

studied here –STEP, ThESE, and optimal– fixing a shortening
ratio of 0.6 for the ThESE and the optimal protocols. The time
evolution and the final amount of Qgen(t) strongly depend on
the type of protocol. The energetic cost of the STEP proto-
col is relatively low, but it requires a long thermalization time.
When comparing the other two protocols that have the same
∆t, it is clear that the optimal solution mitigates the energetic
cost of the transfer when compared to the ThESE protocol.

FIG. 3. Ensemble average, time-dependent cumulative generated
heats Qgen for a STEP (orange), a ThESE (blue) and an optimal pro-
tocol (green), all set at ti = 0 ms. Same color coding as in Fig. 1
and same shaded areas associated with experimental errors at a 95%
confidence level, including calibration and temperature uncertainties
evaluated by the expression of Qgen(t).

In conclusion, we have used a fluctuating, white-noise, radi-
ation pressure to emulate temperature protocols applied to an
optically trapped microsphere and to extend the concept of en-
gineered swift equilibration to thermal protocols. A central re-
sult was to identify the entropic cost of such non-equilibrium
protocols. The trade-off between the state-to-state transfer
duration and the entropic cost led us to the design of opti-
mal cooling and heating protocols. We identified minimal
time-entropy bounds for all possible shortcut strategies in har-
monic potentials and derived speed limits on the transfer rates.
An energetic analysis showed in addition how optimization
yields the best thermodynamic compromise between acceler-
ation and cost. This optimization is important in the context of
thermodynamic cycles and Brownian heat engines, and bears
a fundamental appeal considering that the entropic cost can be
described as a thermodynamic length [39]. From this perspec-
tive, our optimal cooling and heating shortcuts Topt(t) corre-
spond to geodesics within an information geometry viewpoint
that draws fascinating connections yet to be further explored
[41, 42].
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Appendix A: Experimental setup

Our experimental setup consists in optically trapping a single polystyrene microsphere (Duke Scientific Corp. 3 µm diameter)
in ultra pure water by a Gaussian beam –laser 1 on Fig. 4 OBIS Coherent, CW 785 nm, 110 mW . The laser beam is expanded
to overfill a high numerical aperture (NA) water immersion objective –objective 1 Nikon Plan Apochomat 60×, NA = 1.2– that
focuses the beam on a 18 µL fluidic cell (glass slide and coverslip separeted by a spacer -Grace Bio-Labs) of thickness 120 µm.
The microsphere solution is diluted to 0.5 × 10−4 % to ensure that only single spheres are trapped for all experiments. This is
verified by looking to a bright field image produced by an additional laser – not shown – focused on the back focal plane of a
low NA objective –objective 2 Nikon Plan-fluo extra large working distance 60×, NA=0.7.

The instantaneous position of the trapped sphere is recorded from the signal scattered off the trapped sphere of a diode laser
beam –laser 2 Thorlabs HL6323MG CW 639 nm, 30 mW– focused and injected into the trap by Objective 2. The scattered light
is coolected by objective 1 and directed toward a P.I.N. photodiode (Thorlabs, model Det100A2). The signal, recorded in volts,
is sent to a low noise amplifier (Stanford Research, SR560) that removes through a 0.3 Hz high-pass filter the DC component
of the signal. A 100 kHz low-pas filter is used in addition, to prevent aliasing. Both filters are set at 6 dB/oct. The signal
acquisition is finally done using an analog-to-digital card (National Instrument, PCI-6251) with an acquisition rate of 32768 Hz.

A third laser beam –laser 3 Ti:Sapphire Spectra Physics 3900S– adjusted to 800 nm is used to exert fluctuating radiation
pressure on the trapped sphere and emulate a secondary thermal bath. To do so, the laser is sent through an acousto-optic
modulator (AOM - 3200 S Gooch & Housego) that modulates in real-time the intensity of the first-order diffracted beam. This
beam is transmitted through Objective 2 in underfilling conditions to couple to the trapped microsphere. The AOM output is
measured by another P.I.N. photodiode – not shown – (Thorlabs, model Det100A/M), with the same configuration of the previous
one. The control of the AOM is done using a digital-to-analog card (National Instruments PXRe-6738) with a generation rate of
20 kHz.

The divergence of laser 3 is important to control to have an efficient radiation pressure coupling between this beam and the
trapped microsphere. Since the focal plane of objective 2 is first positioned to have a high signal-to-noise ratio for the detection
of the instantaneous motion of the trapped sphere using laser 2, a telescope is used to fine-tune laser 3’s divergence so that both
couplings are efficiently maintained through the common Objective 2 configuration.

Appendix B: Temperature calibration

The intensity of laser 3 is transformed, using the AOM, into a fluctuating signal with a white-noise spectrum. Exerting a
white-noise fluctuating radiation pressure on the trapped microsphere, laser 3 thus modifies the position variance 〈x2

j 〉 = s(t)

FIG. 4. Experimental set-up. The trapping laser beam –laser 1– is focused inside the fluidic cell by objective 1 (60×, NA = 1.2, water
immersion). The instantaneous position of the trapped sphere is probed using laser 2 whose scattered intensity is recorded using a P.I.N.
photodiode. Laser 3 exerts radiation pressure on the trapped sphere. Both lasers 2 and 3 are sent to the cell from the opposite side with respect
to laser 1 using objective 2 (60×, NA = 0.7). It is important that neither laser 2 nor laser 3 induces any spurious gradient force inside the
trap. For that, they are sent into objective 2 in underfilling conditions. Laser 3 passes through an acousto-optic modulator (AOM) –using the
front lens of the telescope stage to adjust laser waist and divergence to the AOM– that enables driving in real-time its intensity (mean and
fluctuations).
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of the microsphere, as measured over multiple trajectories j (1, 7× 104 trajectories forming the experimental ensemble). More
precisely, the laser instantaneous intensity is defined as Ij = I0 + δIj for one trajectory. Ensemble averaging over the set j of
trajectories, we write 〈Ij〉 = I0 and 〈(Ij − I0)2〉 = 〈δI2

j 〉 ∝ ∆T . This radiation pressure emulates an effective thermal bath
whose temperature can be changed instantaneously. The microsphere then thermalize within this effective, secondary bath, with
variance values that depart from the equipartition set by room temperature, as schematized in Fig. 5.

FIG. 5. A pushing laser, in orange on the left-hand side of the schematics (laser 3 in Fig. 4), exerts unidirectional radiation pressure on the
harmonically trapped microsphere and adds noise to the diffusing motion. As explained in the main text, one generates a step-like change in
effective temperatures (here from hot –red– to cold –blue) by modifying abruptly the variance of the laser white-noise intensity fluctuations at
ti. In contrast, the microsphere responds mechanically to this abrupt change by a transient evolution with a natural relaxation time 2τ .

We make sure that the power spectrum of laser 3 remains white over frequencies much larger than the roll-off frequency of
the trap fc = 2π/τ , and that the additional fluctuations imposed on the sphere do not affect the trap stiffness. This condition
is met for sufficiently low intensities –∼ 2 mW– so that, transmitted through objective 2, laser 3 does not impact the roll-off
frequency of the Lorentzian position power spectrum (PSD) of the sphere set by the optical trap induced by Laser 1 –see Fig.
6. In the absence of fluctuations in the radiation pressure (〈δI2

j 〉 = 0), the natural PSD inside an optical trap of stiffness κ is
defined around the roll-off frequency fc = κ/(2πγ) as

S(f) =
1

2π2γ

kBTR

f2 + f2
c

, (B1)

where the viscosity of the water is taken at room temperature TR = 293 K with η(TR) = 9.532 × 10−4 Pa × s, the Stokes
drag γ = 6πηr evaluated for a sphere radius r = 1.5 µm. We calibrate the recorded voltage by fitting Eq. (B1) in the case of
〈δI2

j 〉 = 0, following the standard procedure given in [33, 43].
The effective temperature associated with laser 3 white-noise intensity fluctuations is measured from the evolution of the PSD

–see Fig. 6– accounting for the limited operational bandwidth of the AOM. The temperature calibration exploits the linearity
between the intensity variance of laser 3 and the position variance of the trapped microsphere s(t) = kBTR/κ+αkB〈δI2

j (t)〉/κ,
for stationary conditions (or when the time dependence of 〈δI2

j (t)〉 is slow enough to consider that s(t) evolve as a succession
of equilibrium states through which, at each time, s(t) = kBT (t)/κ with T (t) = TR + α〈δI2

j (t)〉).
The temperature calibration is performed using two different methods. The first one involves equipartition κs = kB(TR + T )

between the steady-state, thermalized measured position variances s and the effective temperatures T set by laser 3. This method
assumes that high frequencies, those above the threshold imposed by the limited bandwidth of the AOM, do not contribute
significantly to s. A second method that does not rely on this approximation is also implemented over a finite bandwidth
analysis. For 〈δI2

j 〉 6= 0, we use Eq. (B1) to fit a Lorentzian on the position PSD, but now using the volt-to-meter conversion
factor and the roll-off frequency value fc obtained in the case of a non fluctuating Laser 3 intensity I = I0. In that case, the only
fitting parameter for the PSD is the effective temperature TR + T . The finite bandwidth extends over the dashed lines on Fig. 6
(a) in which the PSD for three different 〈δI2

j 〉 that corresponds to TR +T = 500, 800, 1200 K. The comparison between the two
calibration methods is displayed in Fig. 6 (b) as a function of the input white-noise (squared amplitude) of laser 3 fluctuations,
〈δI2

j 〉. The calibration factor α involved in the temperature changes ∆T = α〈δI2
j 〉 is then used in a PYTHON code [34] to build

a generic T (t) protocol applying a time dependent variance envelope 〈δI2
j (t)〉 in the noise signal sent by the AOM.

The uncertainties in stiffness and temperature are directly given by the calibration procedures. For the stiffness, uncertainties
stem from the dispersion of the three measurements performed with their Lorentzian fits for I = I0 and corresponds to 0.2
fN/nm. For the temperature, uncertainty come from the errors in the fitting parameter involved in the second calibration method.
They correspond to 40 K.
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FIG. 6. (a) Position PSD for three non-fluctuating radiation pressure sets –lowest overlapping spectra– and for three different white-noise
intensity variances corresponding respectively to TR + T = 500, 800, 1200 K. The dashed lines corresponds to Lorentzian fits of Eq.
(B1) for finite bandwidths extending over the dashed fits. (b) Comparison between the two temperature calibration methods. The blue dots
are the calibration data obtained by these Lorentzian fits and the red ones correspond to the temperatures obtained by assuming that s obeys
equipartition. The lines correspond to linear fits T (〈δI2j 〉) = α〈δI2j 〉+ TR.

Appendix C: Variance s(t) equation of motion

At the one trajectory j level, the motion xj(t) of the trapped microsphere along the optical axis x̂ of the optical trap follows
the Ornstein-Uhlenbeck process

γẋj(t) = −κ(xj(t)− x0(t)) + Fther(ξj(t)) + Fext(t), (C1)

where, Fther(ξj(t)) =
√

2kBTRγξj(t) is Gaussian distributed with zero average 〈ξj(t)〉 = 0 and delta correlated 〈ξj(t)ξj′(t′)〉 =
δjj′δ(t− t′).

The external radiation pressure produces a fluctuating force Fext(t) = F0+δFj(t) with two contributions: the stochastic force
contribution that acts on the Brownian particle and increases its variance, and the mean, constant contribution F0 that produces
a displacement in the equilibrium position. This spatial shift of the equilibrium position inside the trap can be taken into account
by the following change of variable xj(t)→ xj(t) + F0/κ, with the new variable obeying Eq. (C1) with x0(t) ≡ 0.

The other contribution δFj can be combined with Fther. When the fluctuation spectrum of the external radiation pressure is
set to a white noise, Fext(t) acts as a secondary, thermal bath according to Fther(ξj(t)) + δFj(t) →

√
2kBT (t)γξj(t). This

gives the possibility to perform kinetic temperature changes by simply adjusting the amplitude of such white-noise fluctuations.
Multiplying Eq. (C1) by xj(t) leads to the stochastic equation

ẋ2
j (t) = −2

τ
x2
j (t) +

√
8kBT (t)

γ
ξj(t)xj(t), (C2)

where x2
j is experimentally accessible together with its ensemble average done over all stochastic trajectories j at identical

reference times 〈x2
j 〉 = s(t). Rather than given by an instantaneous derivative of the stochastic trajectory, ẋ2

j is given by the
instantaneous difference 2xj(t)(Fther/γ − xj(t)/τ).

In order to transform Eq. (C2) in the deterministic variance equation evolution, we used the stochastic solution for xj(t)
considering a generic T (t) protocol

xj(t) = xj(0
−)e−t/τ +

∫ t

0

√
2kBT (ζ)

γ
ξj(ζ) exp{(ζ − t)/τ}dζ. (C3)

From it, we evaluate the ensemble average correlation function between the stochastic trajectory and the effective thermal
force 〈xj(t)Fther(ξj(t))〉 =

√
kBT (t)/2γ and get Eq. (1), main text

ds

dt
= −2

τ
s(t) + 2D(t), (C4)

with the time dependent diffusion coefficient D(t) = kBT (t)/γ and reminding that γ = τκ.
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Appendix D: Generation of entropy Σgen

Assuming that our Brownian sphere driven by a thermal protocol T (t) evolves through a succession of equilibirum states, the
probability density associated with the dynamical evolution can be written as:

p(xj , T (t)) =
1√

2πkBT (t)/κ
exp

{
−

κx2
j

2kBT (t)

}
. (D1)

Looking at the stochastic entropy σsys = −kB ln p(xj , T (t)) as a state function, the total variation of this quantity through a
transition between two equilibrium states (κ, Ti) → (κ, T (t)) is protocol independent. This gives the possibility to extend Eq.
(D1) to the case of irreversible transformations for which the infinitesimal variation of σsys can be evaluated as:

dσsys(xj , T (t)) =
κ

T (t)
xjdxj +

kB

2T (t)

(
1−

κx2
j

kBT (t)

)
dT. (D2)

From the thermodynamic interpretation of Eq. (C1) presented in [44], the infinitesimal stochastic heat is defined as dq =
−κxjdxj . We can thus identify the first term on the right-hand side of Eq. (D2) as (the opposite of) the infinitesimal variation of
the medium entropy d̄σmed = dqqs/T (t). The infinitesimal variation in the total entropy corresponds to the entropy generated
through the irreversible transformation d̄σgen = d̄σmed + dσsys. After an ensemble average among non equilibrium trajectories,
it writes as 〈d̄σgen〉 = d̄Σgen, so that the cumulative, ensemble average, generated entropy is:

Σgen(t) =
1

2

∫ t

ti

Ṫ (ζ)

T 2(ζ)
(kBT (ζ)− κs(ζ)) dζ, (D3)

in which Ṫ = dT/dt.

Appendix E: Temperature protocols

In this section, the time dependent expressions for the three temperature protocols discussed in the main text (STEP, ThESE
and optimal) are derived, together with the corresponding system’s motional responses through the time-evolution of the variance
s(t). The expressions obtained here are plotted in Fig. 2, main text.

1. STEP protocols

The STEP protocol corresponds to an abrupt temperature change. Using the step function for which Θ(t − ti) = 0 if t < ti
and Θ(t− ti) = 1 if t ≥ ti, the protocol that connects an initial temperature T (t−i ) = TR + Ti to a final one T (t+i ) = TR + Tf
in which Tf − Ti = ∆T writes as

T (t) = (TR + Ti) + Θ(t− ti)∆T, (E1)

Using this protocol into Eq. (C4) –Eq. (1) in the main text– and imposing an initial equilibrium condition s(ti) = kB(TR +
Ti)/κ corresponding to equipartition, the evolution of s(t) for t > ti is given by

s(t) =
kB
κ

(
TR + Tf −∆T exp

{
−2

τ
(t− ti)

})
. (E2)

2. ThESE protocols

Adapting [35] (in which trap stiffness protocols κ(t) are developed) to temperature protocols T (t), we use the same third
degree polynomial ansatz for the variance s(t) = At3 + Bt2 + Ct + D, imposing initial s(ti) = si = kB(Ti + TR)/κ and
final s(tf ) = sf = kB(Tf + TR)/κ equilibrium conditions together with ṡ(ti) = ṡ(tf ) = 0. We calculate the time-dependent
variance s(t) along the transition duration time tf − ti = ∆t as

s(t) =
kB

κ

(
−2∆T

t3

∆t3
+ 3∆T

t2

∆t2
+ TR + Ti

)
. (E3)
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Substituting Eq. (E3) and its derivative ṡ(t) into Eq. (C4) yields the explicit time dependent protocol

T (t) = −2∆T
t3

∆t3
+ 3∆T

(
− τ

∆t
+ 1
) t2

∆t2
+ 3∆T

τt

∆t2
+ TR + Ti. (E4)

3. Optimal protocols

Optimal protocols are derived following the optimization method that we developed in [33] for trap stiffness protocols κ(t).
This method relies on treating the equilibrium state-to-state transfer duration and the energetic cost on an equal footing, with
trade-off regulated by a Lagrange multiplier to built a functional that can then be minimized using standard Euler-Lagrange
equations. In the case of trap stiffness protocols κ(t), the energetic cost was identified as the dissipative work [33]. As discussed
in the main text, for the case of thermal protocol that correspond to isochoric transition (i.e. work-free), the thermodynamic
footprint of the protocol is of entropic nature. The trade-off is then regulated between the transfer duration ∆t = tf − ti and the
production of entropy.

The expression of the generated entropy Σgen given by Eq. (D3) –Eq. (2) in the main text– can be integrated by parts:

Σgen[si, sf ;T (s)] =
kB

2
ln
TR + Tf
TR + Ti

+
kB

2

(
κsf

kB(TR + Tf )
− κsi
kB(TR + Ti)

)
− κ

2

∫ sf

si

ds
T (s)

. (E5)

The first term is identified as the protocol independent total variation of the system’s entropy ∆Σsys. The second one is
zero when considering that the initial and final states are fixed to be at thermal equilibrium, obeying equipartition, just like for
ThESE protocols. In contrast, the last term depends on the profile of the protocol and thus carries the entropic contribution of
the non-equilibrium process.

The duration ∆t = tf − ti for the TR + Ti → TR + Tf transfer can be written as a functional of the variance s(t) using Eq.
(C4):

∆t =

∫ tf

ti

dt =
1

2

∫ sf

si

γds

kBT (s)− sκ
. (E6)

The trade-off between entropy production and state-to-state transfer duration is then given by:∫ sf

si

L[s, T (s)]ds =

∫ sf

si

(
γ

kBT (s)− sκ
− λκ

kBT (s)

)
ds, (E7)

where λ/kB is a Lagrange multiplier. The Euler-Lagrange equation d/ds(∂L/∂T ′)− ∂L/∂T = 0, with T ′ ≡ dT/ds, will lead
to the second order polynomial equation (

1− λ

τ

)
T 2 + 2

λ

τ

κs

kB
T − λ

τ

(
κs

kB

)2

= 0. (E8)

with two solutions that form the temperature protocols related either to a heating protocol or to a cooling one, refereed with the
sub-index “h” and “c” respectively. The protocols can be written in terms of the variance according to

Th/c(s) =
κs

kB

(
1∓

√
τ/λh/c

) , (E9)

with associated heating/cooling Lagrange multipliers. The quasi-static limit of a reversible transition corresponds to λh/c →∞.
To be implemented, explicit time dependent solutions T (t) for the protocol are necessary. For the variance, time-dependent

solutions are obtained by substituting Eq. (E9) into Eq. (C4) to give:

sh/c(t) = si exp

[
−2

(t− ti)
τ

(
1− 1

1∓
√
τ/λh/c

)]
. (E10)

Another way to express those optimal solutions is through the transfer time ∆t = tf − ti, considering that at the final time of
the transfer, the system is at thermal equilibrium with sh/c(tf ) = kB(TR + Tf )/κ. The relation between λh/c and ∆t is thus
given by

1∓
√
τ/λh/c =

(
1 +

τ

2∆t
ln
TR + Tf
TR + Ti

)−1

, (E11)
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The asset of this parametrization is to lead to a similar expression for a heating or a cooling protocol for T (t) and s(t). By
substituting Eq. (E11) into Eqs. (E9) and (E10), we end up respectively with:

Topt(s,∆t, Ti, Tf ) =
κs

kB

(
1 +

τ

2∆t
ln
TR + Tf
TR + Ti

)
, (E12)

sopt(t) = si

(
TR + Tf
TR + Ti

)(t−ti)/∆t

, (E13)

Appendix F: Minimal entropy production

Eq. (5) from the main text is derived by substituting the optimal protocol, Eq. (E13) and Eq. (E12), into Eq. (E5). This
leads to the entropy produced throughout the isochoric transition of duration ∆t associated with an optimal protocol, that is the
minimal amount of produced entropy.

As discussed in the main text, the optimal protocol goes through three stages: two discontinuities at the beginning and at the
end of the protocol, and an exponential, non-equilibrium, evolution in-between for t+i ≤ t ≥ t−f . The first discontinuity with

T (t−i ) = TR + Ti and T (t+i ) = (TR + Ti)(1 + τ
2∆t ln

TR+Tf

TR+Ti
), with s(t−i ) = si and s(t+i ) = si, has an entropy production of

Σ
(1)
min =

kB

2
ln

[
1 +

τ

2∆t
ln
TR + Tf
TR + Ti

]
+
kB

2

(
1

1 + τ
2∆t ln

TR+Tf

TR+Ti

− 1

)
. (F1)

Through the second intermediate stage T (t+i ) = (TR + Ti)(1 + τ
2∆t ln

TR+Tf

TR+Ti
), T (t−f ) = (TR + Tf )(1 + τ

2∆t ln
TR+Tf

TR+Ti
),

s(t+i ) = si and s(t−f ) = sf , the entropy production is

Σ
(2)
min =

kB

2
ln
TR + Tf
TR + Ti

−
kB ln

TR+Tf

TR+Ti

2
(

1 + τ
2∆t ln

TR+Tf

TR+Ti

) . (F2)

The last stage corresponds to the second discontinuity with T (t−f ) = (TR +Tf )(1 + τ
2∆t ln

TR+Tf

TR+Ti
), T (t+f ) = TR +Tf , while

s(t−f ) = sf and s(t+f ) = sf . It leads to the entropy production

Σ
(3)
min = −kB

2
ln

[
1 +

τ

2∆t
ln
TR + Tf
TR + Ti

]
+
kB

2

(
1− 1

1 + τ
2∆t ln

TR+Tf

TR+Ti

)
, (F3)

with Σ
(3)
min = −Σ

(1)
min. The minimal amount of entropy production for an optimized thermal protocol through a transfer duration

∆t is Σmin = Σ
(1)
min + Σ

(2)
min + Σ

(3)
min = Σ

(2)
min. Using the definition of the total variation of the system’s entropy ∆Σsys =

(kB/2) ln(TR + Tf )/(TR + Ti), Eq. (F2) leads to Eq. (5) in the main text.

Appendix G: Energetics

As introduced above Sec. D, the heat identified on Eq. (C1) corresponds to a total differential. After averaging over the
ensemble of trajectories, dQ = −(1/2)κ

〈
dx2

j

〉
, the cumulative heat corresponds to:

Q(t) = −κ
2

∫ s(t)

s(ti)

ds. (G1)

Through an isochoric transformation (work-free), this cumulative heat is equal to the system’s internal energy change, ∆Usys =
−Q(t). The first law however does not account for the heat, given from the bath to the system, generated through the irreversible
isochoric transformation. This energetic footprint can be evaluated based on Σgen, using its differential form from Eq. (D3)

d̄Σgen =
kBT − κs

T 2
dT. (G2)

This expression leads to define the in-take heatQgen(t) evaluated in the main text. In the reversible, quasi-static limit, the internal
energies of the system and the medium coincide at all times, leading to Qgen(t)→ 0 with therefore kB∆T (t)/2→ ∆Usys(t) as
expected.
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Appendix H: Data analysis and error bar

Once the temperature and trap calibrations are performed, as discussed above –Sec. B– the different temperature protocols are
defined by setting the initial Ti and final Tf target temperatures and fixing the state-to-state transfer duration ∆t. Each protocol
is repeated to form an ensemble ofNcycles ∼ 17000 trajectories recorded over 6 minutes. These trajectories are combined, using
for a time reference the intensity variance envelope sent by the AOM (see Sec. A). The uncertainty on the experimental variances
are computed using a χ2 law with Ncycles − 1 degrees of freedom with a confidence interval of 95 %. The uncertainties on the
entropy and heat measurements are obtained by standard methods for the propagation of errors.
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[30] P. V. Paraguassú, R. Aquino, L. Defaveri, and W. A. M. Morgado, Effects of the kinetic energy in heat for overdamped systems, Phys.

Rev. E 106, 044106 (2022).

https://doi.org/10.1073/pnas.0912969107
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1038/s41598-021-83824-7
https://doi.org/10.1038/s41598-021-83824-7
https://doi.org/10.1126/science.abg302
https://doi.org/10.1103/PhysRevLett.128.070601
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.87.032159
https://doi.org/10.1103/PhysRevE.98.010104
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1103/PhysRevLett.127.123605
https://doi.org/10.1038/nphys3518
https://doi.org/10.1088/1742-5468/abb0e1
https://doi.org/10.1103/PhysRevResearch.4.L012008
https://doi.org/10.1038/s41586-020-2560-x
https://doi.org/10.1103/PhysRevE.101.032129
https://doi.org/10.1103/PhysRevE.101.032129
https://doi.org/10.1103/PhysRevE.102.012129
https://doi.org/10.1103/PhysRevResearch.3.033130
https://doi.org/10.1103/PhysRevE.106.054108
https://doi.org/10.1140/epjp/s13360-022-03150-3
https://doi.org/10.1140/epjp/s13360-022-03150-3
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1088/1361-6633/acacad
https://doi.org/10.1103/PhysRevResearch.1.033122
https://doi.org/10.1038/s41467-020-15148-5
https://doi.org/10.1038/s41467-020-15148-5
https://doi.org/10.1103/PhysRevResearch.3.023128
https://doi.org/10.1103/PhysRevE.105.L052103
https://doi.org/10.1103/PhysRevResearch.4.043130
https://doi.org/10.1103/PhysRevResearch.4.023157
https://doi.org/10.1103/PhysRevE.106.044106
https://doi.org/10.1103/PhysRevE.106.044106


12

[31] T. Schmiedl and U. Seifert, Optimal finite-time processes in stochastic thermodynamics, Phys. Rev. Lett. 98, 108301 (2007).
[32] M. V. S. Bonança and S. Deffner, Minimal dissipation in processes far from equilibrium, Phys. Rev. E 98, 042103 (2018).
[33] Y. Rosales-Cabara, G. Manfredi, G. Schnoering, P.-A. Hervieux, L. Mertz, and C. Genet, Optimal protocols and universal time-energy

bound in Brownian thermodynamics, Phys. Rev. Res. 2, 012012 (2020).
[34] R. Goerlich, L. B. Pires, G. Manfredi, P.-A. Hervieux, and C. Genet, Harvesting information to control nonequilibrium states of active

matter, Phys. Rev. E 106, 054617 (2022).
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