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By controlling the variance of the radiation pressure exerted on an optically trapped microsphere in real
time, we engineer temperature protocols that shortcut thermal relaxation when transferring the microsphere
from one thermal equilibrium state to another. We identify the entropic footprint of such accelerated
transfers and derive optimal temperature protocols that either minimize the production of entropy for a
given transfer duration or accelerate the transfer for a given entropic cost as much as possible. Optimizing
the trade-off yields time-entropy bounds that put speed limits on thermalization schemes. We further show
how optimization expands the possibilities for accelerating Brownian thermalization down to its
fundamental limits. Our approach paves the way for the design of optimized, finite-time thermodynamics
for Brownian engines. It also offers a platform for investigating fundamental connections between
information geometry and finite-time processes.
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The time needed for a body to thermalize with its
environment is a natural constraint for operating many
physical systems and devices. Controlling thermalization
has emerged as one salient challenge in the mesoscale
and nanoscale regimes [1–5]. At such scales, the
methods of stochastic thermodynamics have proven their
efficiency, capable of extending the concepts of work,
heat, and entropy to single, fluctuating systems [6,7].
Experimentally, new strategies have recently been imple-
mented on optically trapped Brownian particles to emulate
effective and, thereby, controllable thermal baths [8–12].
The fine control of the time dependence of effective temper-
atures has led to the definition of thermal protocols and
optimized cycles [13–15]. Exploiting finite-time thermo-
dynamics, these strategies have also provided the means
to circumvent natural thermalization by proposing
accelerated paths that a Brownian system can be forced to
follow [10,16–21]. Suchmeans form amajor topic of current
research in the realm of shortcuts to adiabaticity [22,23].
Obviously, speeding-up transitions from one equilibrium

state to another demands following nonequilibrium paths
that have a thermodynamic cost. Once such cost is
evaluated, the design of protocols that optimize the mutu-
ally exclusive relation between the rate of acceleration and
the energetic expense should be possible. There is a variety
of approaches proposed for evaluating that energetic
expense [24–30], but the challenge remains to identify

the proper one which makes it possible to treat duration
and cost on an equal footing, the prerequisite for this
optimization [31–33].
In this Letter, we set up a bath engineering strategy

involving radiation pressure to directly control the kinetic
temperature of an optically trapped, overdamped, Brownian
microsphere [34]. This control allows us to impose abrupt
transfers from one to another equilibrium state, either
increasing or decreasing the temperature down to a mini-
mum set by room temperature TR. Such steplike transfers
are followed by thermal relaxations measured precisely
through the diffusive dynamics of the microsphere inside
the harmonic optical trap. Our strategy gives the possibility
of accelerating such thermal relaxation processes by
imposing an overshoot in temperature during the transfer.
This leads us to extend to isochoric transitions the engi-
neered swift equilibration (ESE) processes developed so far
for isothermal transitions [35]. We show how thermal ESE
protocols—hereafter named ThESE protocols—do accel-
erate thermalization, and experimentally demonstrate the
shortening of the duration of initial-to-final thermal
equilibrium transfers. We further quantify the thermo-
dynamic cost of this acceleration in terms of entropy
production.
The identification of the entropic cost of a thermal

shortcut brings us, in the context of harmonic trapping,
to a class of optimal thermal protocols, defined as those
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protocols that speedup thermalization while minimizing the
associated production of entropy. Such isochoric protocols
are of a different nature, compared to the isothermal
optimal processes we recently derived [33]. In contrast
to isothermal processes, whose energetics description only
relies on the first law of thermodynamics, the trade-off
involved in thermal optimization procedures results in time-
entropy bounds that limit the speed of physically realizable
thermal protocols. Such limits display a remarkable asym-
metry between heating and cooling protocols. Then, we
demonstrate that optimal cooling gives access to higher
acceleration rates that are unreachable using standard
overshooting, ThESE-like protocols. Next, these results
are discussed from an energetic viewpoint for the three
families (steplike, ThESE, and optimized) of state-to-state
transitions, which clarifies the different contributions to the
global intake of heat by the trapped microsphere under the
action of the fluctuating radiation pressure. Finally, we
stress that our optimization-under-cost constraint leads to
results that are different from the thermal brachistochrones
recently proposed in [21].
Our experiment consists of a single microsphere

trapped in an optical tweezer and evolving in a harmonic
potential [36,37]. The microsphere diffuses in water with a
Stokes drag γ ¼ 2.695 × 10−8 kg=s at room temperature
TR ¼ 293 K. The trap is characterized by a stiffness κ ¼
13.1� 0.2 fN=nm and the overdamped diffusion dynamics
by a relaxation time τ ¼ γ=κ ¼ 2.06� 0.04 ms. As
described in detail in the Supplemental Material
(Secs. A and B, [38]), an additional radiation pressure is
exerted on the sphere by a pushing laser whose intensity
IðtÞ ¼ I0 þ δIðtÞ is digitally controlled over time by an
acousto-optic modulator [34]. When δIðtÞ is random (white
noise spectrum), this radiation pressure increases the
motional variance of the center-of-mass motion of the
sphere along the optical axis of the trap. By building a
statistical ensemble fjg of 1.7 × 104 diffusing trajectories
xjðtÞ, we extract an ensemble average variance sðtÞ ¼
hx2jðtÞi in direct relation with the pushing laser intensity
variance hδI2ðtÞi. This random forcing of the microsphere
can be interpreted as emulating an effective thermal bath
whose temperature TðtÞ can be set instantaneously in strict
relation with the intensity variance with TðtÞ ∝ hδI2ðtÞi.
The mechanical response of the microsphere is measured
through the time evolution of sðtÞ according to (see
Supplemental Material, Sec. C, [38])

dsðtÞ
dt

¼ 2

τ

�
kBTðtÞ

κ
− sðtÞ

�
: ð1Þ

The effective nature of TðtÞ implies that thermal changes
impact the diffusion coefficient simply asDðtÞ ¼ kBTðtÞ=γ
and the system relaxation time τ remains constant. Thus, by
transforming temperature into an external control param-
eter TðtÞ, the crucial asset of our bath engineering strategy

is the possibility of performing specific temperature pro-
tocols that can be arbitrarily fast from one initial TR þ Ti to
another final target temperature TR þ Tf. As discussed
below, this opens rich analogies with recent works that have
demonstrated how time-dependent optical trap stiffness
protocols κðtÞ can shortcut, engineer, and even optimize
state-to-state isothermal processes [33,35,41].
Let us start by implementing a sudden, steplike change

ΔT ¼ Tf − Ti between an initial TR þ Ti and a final
TR þ Tf temperature. This steplike protocol (STEP) is
described in the upper panel of Fig. 1. It produces a
transient response of the variance sðtÞ that we measure and

FIG. 1. Upper panel: Time evolution TðtÞ plotted for three
cooling protocols connecting two thermal equilibrium states, one
initial at TR þ Ti and one final at TR þ Tf where TR ¼ 293 K
corresponds to room temperature and TR þ Ti ¼ 2200 K, TR þ
Tf ¼ 1200 K to the target temperatures fixed by the laser
fluctuation spectrum. The orange curve corresponds to a steplike
protocol (STEP) with a simple temperature discontinuous
quench, the blue curve to the ThESE protocol through which
Ti and Tf are connected by a third degree polynomial, the green
curve to the optimal protocol (Opt) with its two discontinuities
ensuring the connection between the initially hot (at t ¼ 0−) and
finally cold (at t ¼ Δtþ) equilibrium states. Lower panel:
Measured time evolutions (data points with same color coding
as in the upper panel) of the motional variances sðtÞ induced by
the different thermal protocols starting at t ¼ 0þ. The variances
for the ThESE and Opt shortcuts reach equilibrium at a rate
Δt=τ ¼ 0.6, as indicated by the vertical line. The shaded areas
give the experimental errors at a 95% confidence interval for sðtÞ.
The analytical solutions for sðtÞ for the three protocols, calculated
in the Supplemental Material (Sec. E, [38]) from Eq. (1),
correspond to the continuous lines drawn on the experimental
data points. Inset: Levels of produced entropy Σgen associated to
each of the three protocols and evaluated using Eq. (2). Error bars
for Σgen correspond to the combination of the uncertainties in
sðtÞ, stiffness and temperature (see more details in the Supple-
mental Material, Sec. H, [38]).
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plot in the lower panel of Fig. 1. As observed in excellent
agreement with Eq. (1), the variance relaxes toward the new
thermal equilibrium state with a relaxation time 2τ. Such a
relaxation corresponds to the definition of natural thermal-
ization, in which the system is left free to evolve toward a
new equilibrium state. Now, we show that it is possible to
impose a temperature protocol that displays a much shorter
thermalization time for the same ΔT change. To do so, we
extend to temperature the class of ESE isothermal protocols
presented in [35] with a polynomial temperature over-
shoot evaluated in the Supplemental Material (Sec. E.2,
[38]), imposing stationary thermal equilibrium si=sf ¼
ðTR þ TiÞ=ðTR þ TfÞ and ṡðtÞjt¼0;Δt ¼ 0 at the initial
sðt ¼ 0Þ ¼ si and final sðt ¼ ΔtÞ ¼ sf steps of the process.
The corresponding TðtÞ protocol is plotted in the upper
panel of Fig. 1 for a chosen transfer duration Δt ¼ 1.23 ms
imposed to be shorter than 2τ with a ratio Δt=τ ¼ 0.6. It is
implemented experimentally, and we measure in the lower
panel of Fig. 1 the time evolution of the system’s variance
sðtÞ in excellent agreement with the theory.
The remaining central question for such accelerated

thermalization protocols concerns their possible optimiza-
tion with respect to a well-identified footprint. In the case of
isothermal stiffness protocols κðtÞ, the thermodynamic cost
of acceleration was evaluated through the associated work
expense and the minimization procedure designed accord-
ingly [31–33]. Temperature protocols, in contrast, are
entropic by nature and have been recently characterized
using the concept of thermal (entropic) work [5]. This
entropic nature clearly appears when interpreting Eq. (1)
thermodynamically: whenever the temperature changes
faster than τ, the system will evolve along an irreversible,
nonequilibrium process in which the instantaneous vari-
ance sðtÞ will be different from the one expected by
equipartition. Thus, the difference between sðtÞ and
kBTðtÞ=κ measures the deviation from a reversible process
and, as such, is associated to a given production of entropy
that we evaluate now.
For our experiments, we define the system’s stochastic

entropy σsys½xjðtÞ; TðtÞ� ¼ −kB lnp½xjðtÞ; TðtÞ� [7] from
an extension of the Boltzmann probability density
p½xjðtÞ; TðtÞ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ=2πkBTðtÞ
p

expf−κx2jðtÞ=½2kBTðtÞ�g
to nonequilibrium processes that connect two equi-
librium states. This definition of entropy has appropriate
thermodynamic features, as discussed in the Supplemental
Material, Sec. D, [38]. Using this definition, the
infinitesimal variation of the system’s entropy is evaluated
as dσsys½xjðtÞ; TðtÞ� ¼ κxjdxj=TðtÞ þ ½kBTðtÞ − κx2j �dT=
½2T2ðtÞ�. The first term involves the quantity of heat dq ¼
−κxjdxj associated with the change of internal energy of
the system. It corresponds to (the opposite of) the variation
of the entropy of the medium đσmed ¼ dq=TðtÞ where we
use the đ notation for nonexact differentials. Thus, the
second term, written as đσgen ¼ dσsys þ đσmed, gives the

infinitesimal amount of total entropy generated along the

elementary path dT.
The generated total entropy, once ensemble averaged

hđσgeni ¼ ½kBTðtÞ − κhx2jðtÞi�dT=½2T2ðtÞ� and cumulated
from the initial time t ¼ 0 to a given time t of the isochoric
transformation becomes

ΣgenðtÞ ¼
1

2

Z
t

0

ṪðζÞ
T2ðζÞ ½kBTðζÞ − κsðζÞ�dζ; ð2Þ

where the nonequilibrium nature of the transformation is
imprinted in the difference kBTðtÞ − κsðtÞ between the
measured variance and equipartition. Therefore, ΣgenðtÞ
corresponds to the cumulated entropy produced along the
irreversible transition and constitutes the entropic footprint
of a finite-time isochoric process. For the entire STEP and
ThESE protocols, in which t → ∞ and t ¼ Δt, respec-
tively, the total entropy production can be easily calculated
using Eq. (2), and the results are plotted in the inset of
Fig. 1. When compared, these values reveal, in a striking
manner, the entropic cost of thermal acceleration with
ΣThESE
gen > ΣSTEP

gen .
Our analysis now gives the possibility of deriving the

actual temporal profile of an optimal protocol that mini-
mizes this entropic cost for a given choice of transfer
duration Δt from one equilibrium state at TR þ Ti to
another at TR þ Tf. Extending to entropic cost the min-
imization procedure we developed in [33], we build a
functional that combines on an equal footing the transfer
duration and the corresponding generation of entropy

J½TðsÞ� ¼
Z

sf

si

�
γ

kBTðsÞ − sκ
− λ

κ

kBTðsÞ
�
ds; ð3Þ

where the first term on the right-hand side is the transfer
duration expressed as a function of the variance according
to Eq. (1). The second term is the path dependent part of the
generated entropy, evaluated by integrating by parts Eq. (2).
The derivations of these expressions for the transfer
duration and generated entropy are detailed in the
Supplemental Material, Sec. E.3, [38]. We introduce a
Lagrange multiplier λ to regulate the trade-off between the
two quantities. The optimization procedure consists in
searching for the paths in the ½s; TðsÞ� space that minimize
J½TðsÞ� under the constraint that the system is at thermo-
dynamic equilibrium at the initial and final times. As
explained in the Supplemental Material, Sec. E, [38], the
procedure yields two families of optimized thermal proto-
cols Theat=coolðsÞ associated, respectively, to heating Ti <
Tf and cooling Ti > Tf. We emphasize that the Theat=coolðsÞ
protocol does not satisfy thermal equilibrium at both initial
and final times and, therefore, must be supplemented by
two discontinuous transitions, as in the case of optimal
isothermal processes [31,33]. During the interval Δt, those
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two solutions correspond to an exponential evolution of the
variance with soptðtÞ ¼ si½ðTR þ TfÞ=ðTR þ TiÞ�t=Δt. It is
remarkable that both Theat=coolðsÞ protocols can be
described with a single expression

ToptðtÞ ¼
κsoptðtÞ
kB

�
1þ τ

kB

ΔΣsys

Δt

�
ð4Þ

where ΔΣsys ¼ kB ln½ðTR þ TfÞ=ðTR þ TiÞ�=2 is the pro-
tocol-independent total variation in the entropy of the
system. This expression is plotted in the upper panel of
Fig. 1 for an optimal cooling protocol and with the same
shortening rate Δt=τ ¼ 0.6 as the ThESE protocol dis-
cussed above. As one expected important result of our
work, ΣThESE

gen > Σopt
gen.

The optimal protocol given byEq. (4) togetherwith soptðtÞ
injected into Eq. (2) leads us to evaluate (see Supplemental
Material, Sec. F [38]) theminimal entropy produced through
an isochoric transformation of duration Δt as

Σmin ¼
ΔΣsys

1þ kB
τ

Δt
ΔΣsys

; ð5Þ

an expression valid both for cooling and heating protocols
but with different consequences, as discussed below.
In Fig. 2, we plot Eq. (5) for cooling (upper panel) and

heating (lower panel) optimal protocols (solid black lines).
The curves draw exclusion regions for entropy production
that correspond to the minimal amount of entropy that can
be generated in an isochore for a given Δt: thus, they
correspond to optimal time-entropy bounds. Our exper-
imental results obtained for different optimal cooling and
heating protocols ToptðtÞ injected within our optical trap
(same set of temperatures but different transfer durations)
all precisely fall on the expected bounds.
For a cooling process with ΔΣsys < 0, Eq. (5) also puts

an asymptotic limit to the transfer rate with a minimal
transfer duration of Δtmin=τ ¼ −ΔΣsys=kB. This limit is in
agreement with the one-dimensional cooling brachisto-
chrone result given in [21]. Beyond this minimum, our
approach yields bounds on the dynamical evolution of our
system, extracted from the trade-off involved in the
optimization procedure between the transfer duration and
the production of entropy. Such bounds must be considered
as true speed limits on the state-to-state connection [42].
They are directly associated with a divergence in the
entropic cost as clearly seen experimentally in Fig. 2 for
the shortest transfer rate that we probed (vertical dashed
line). This limit in the cooling acceleration is directly
related to the fact that the lowest temperature reached right
before the final discontinuity at t ¼ Δt− (see Fig. 1, upper
panel) Tmin ¼ ToptðΔt−Þ ¼ Tf½1 þ ðτ=kBÞðΔΣsys=ΔtÞ�
which the optimal protocol passes through, cannot be
smaller than 0 K, a temperature limit reached when

Δtmin=τ ¼ −ðΔΣsys=kBÞ ¼ 0.3 for our ðTi; TfÞ choice.
However, experimentally, we necessarily have Tmin ≥ TR,
and for the case presented in Fig. 2, this implies that
the shortest transfer rate reachable is Δtmin=τ ¼
−ðΔΣsys=kBÞð1þ TR=TfÞ.
Room temperature obviously bounds from below all

overshoot temperatures that can be physically hit. This
leads to an interesting consequence when comparing
optimal and ThESE cooling protocols for identical short-
ening rates and target temperatures Ti > Tf. Because the
overshoot temperature for the ThESE protocol is neces-
sarily lower than Tmin for the optimal protocol for a given
Δt—see Fig. 1 (upper panel)—the room temperature bound
is reached by the ThESE protocol before the optimal one.
More precisely, the ThESE protocol cannot accelerate
cooling beyond Δt=τ ¼ 0.6, since this would imply an
overshoot temperature below room temperature. This
physical limit put on the ThESE protocol corresponds to
the sharp exclusion region plotted in Fig. 1 (upper panel).
In contrast and remarkably, the optimal protocols can
still have access to stronger acceleration rates with ratios
between Δt=τ ¼ 0.6 and 0.4 that remain available experi-
mentally, as we perfectly measure. This important result

FIG. 2. Minimal time-entropy bound (solid black lines) corre-
sponding to an optimal cooling (TR þ Ti ¼ 2200 K,
TR þ Tf ¼ 1200K) protocol (upper panel) and an optimal heating
protocol performed between TR þ Ti ¼ 350 K to TR þ Tf ¼
1100 K (lower panel). The gray hatched region is forbidden to
any acceleration method. Experimental measurements for optimal
protocols are shown with green open circles and with blue open
squares for ThESE protocols. Error bars correspond to exper-
imental errors propagated through Eq. (2) at a 95% confidence
level. Because room temperature is a bound for all our experi-
ments, the fundamental limit put onThESE cooling protocols is set
atΔt=τ ¼ 0.6 for the chosen experimental parameters. This limit is
depicted as a second exclusion region (green hatched region) for
such overshooting temperature protocols.
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reveals another, yet unexpected, thermodynamic advantage
of optimization giving access to time-entropy regions that
are simply forbidden to nonoptimized protocols.
Contrasting with cooling, optimal heating protocols are

not constrained by any fundamental limit (Fig. 2, lower
panel). With ΔΣsys > 0 in Eq. (5), the production of
entropy does not diverge and the system can be forced
to thermalize arbitrarily fast, a feature also found in the
brachistochrone case [21]. The optimal time-entropy bound
for heating protocols is plotted in Fig. 2 together with the
experimental measurements obtained when implementing
heating ThESE and optimal protocols.
Finally, we measure the instantaneous, ensemble

average, heat generated by the action of the radiation
pressure đQgen ¼ −TðtÞdΣgen and transferred to the
microsphere while evolving from the initial state sðt ¼
0Þ ¼ si to one nonequilibrium state sðtÞ [43]. The time-
dependent cumulative intake of heat for isochores can be
evaluated directly from Eq. (2) as QgenðtÞ ¼ −

R
t
0 dζṪðζÞ

½kBTðζÞ − κsðζÞ�=½2TðζÞ�. This quantity of heat is plotted
in Fig. 3 for the three families of protocols studied here—
STEP, ThESE, and optimal—fixing a shortening ratio of
0.6 for the ThESE and the optimal protocols. The time
evolution and the final amount of QgenðtÞ strongly depend
on the type of protocol. The energetic cost of the STEP
protocol is relatively low, but it requires a long thermal-
ization time. When comparing the other two protocols that
have the same Δt, it is clear that the optimal solution
mitigates the energetic cost of the transfer when compared
to the ThESE protocol.
In conclusion, we have used a fluctuating, white-noise,

radiation pressure to emulate temperature protocols applied

to an optically trapped microsphere and to extend the
concept of engineered swift equilibration to thermal pro-
tocols. A central result was to identify the entropic cost of
these nonequilibrium protocols. As such, these results are
not a mere extension of our previous ones on optimal
isothermal processes [33]. There, the energetics of an
isothermal transformation was straightforward to quan-
tify—and thereby, to optimize—since it only involved the
first law of thermodynamics. For thermal protocols,
the trade-off between the state-to-state transfer duration
and the entropic cost led us to the design of optimal cooling
and heating protocols. We identified minimal time-entropy
bounds for all possible shortcut strategies in harmonic
potentials and derived speed limits on the transfer rates. In
addition, an energetic analysis showed how optimization
yields the best thermodynamic compromise between accel-
eration and cost. This optimization is important in the
context of thermodynamic cycles and Brownian heat
engines, and bears a fundamental appeal considering that
the entropic cost can be described as a thermodynamic
length [42]. From this perspective, our optimal cooling and
heating shortcuts ToptðtÞ correspond to geodesics within an
information geometry viewpoint that draws fascinating
connections yet to be further explored [44,45].
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