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A diffusive process that is reset to its origin at random times, so-called stochastic resetting (SR) is an ubiq-
uitous expedient in many natural systems [1]. Beyond its ability to improve efficiency of target searching, SR
is a true non-equilibrium thermodynamic process that brings forward new and challenging questions [2]. Here,
we experimentally implement SR within a time-dependent optical trapping potential and give a quantitative as-
sessment of its thermodynamics. We show in particular that SR operates as a Maxwell demon, converting heat
into work from a single bath continuously and without feedback [3, 4]. Such a demon is the manifestation of
the constant erasure of information at play in resetting that, in our experiments, takes the form of a protocol.
By tailoring this protocol, we can bring the demon down to its minimal energetic cost, the Landauer bound [5].
In addition, we reveal that the individual trajectories forming this autonomous demon all break ergodicity and
thereby demonstrate the non-ergodic nature of the demon’s modus operandi.

In a stochastic resetting (SR) process, a Brownian object
diffuses, either freely or in a potential, for a random time
τ before being reset to the origin [1, 6–8]. This simple yet
rich paradigm has drawn a lot of attention recently in various
fields of research. Because it minimizes first passage times
in search process [9] SR is the adequate solution to numer-
ous search problems in nature [10, 11] and in algorithms used
for instance in molecular dynamics [12]. Thermodynamically,
resetting brings the system in a non-equilibrium steady state
with specific properties. Consequently, the ability to improve
efficiency of target searching comes with a cost that has to be
balanced with the gain in search time [2, 13]. Such a complex
trade-off is embedded in natural processes relying on reset-
ting, but its quantitative characterization is still missing. This
is currently not only driving intense theoretical efforts related
to the thermodynamic cost associated to resetting [14–18] but
is also challenging experimentalists to fill-in the gap between
an idealized, theoretical SR process and its actual physical re-
alization. We note that this cost has an informational nature,
since each resetting event, in an idealized framework, is an
instantaneous erasure of a finite amount of information. Re-
markably, the corresponding thermodynamics can be quanti-
fied when resetting happens in a confining potential, where
heat is effectively absorbed from a single heat bath and work
extracted [2]. Such a Maxwell demon is constrained by a
non-equilibrium second law, imposing a bound on the mini-
mal amount of energy that has to be fed into the system, at
least equal to the extracted work [4, 19]. However, a physical
implementation of SR necessarily involves continuous trajec-
tories, that consume a larger amount of energy. To test the
bound derived from the second law and extract its informa-
tional significance, the thermodynamic description has there-
fore to be adjusted to such a real situation. Doing so, we can
show that the information thermodynamics of SR is rooted in
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the irreversibility of the process imprinted at the level of each
individual stochastic trajectories. By measuring from all such
trajectories the non-ergodic nature of SR, we further stress the
link between ergodicity breaking and information processing
[20–22].

Experimentally, an SR process can be implemented through
various ways [23, 24]. Here, we set up a platform where it is
possible to discuss, from the same trajectories, both the real
and idealized situations, with their respective thermodynamic
descriptions. This platform consists of a Brownian micro-
sphere subjected to a time-dependent optical potential with
two states: (i) a weak potential state, allowing the microsphere
to diffuse during a time τ and (ii) a strongly confining state,
quenching the particle very close to x = 0 and resetting its
position in a waiting time τw. We choose to reset the micro-
sphere’s trajectory randomly in time with a constant rate λ,
hence implementing within our optical trap a Poissonian SR
process. Our experimental method is similar to the one pro-
posed in [25] and used in [24, 26] but differs from [23].

Our capacity to record real-time trajectories allows us to
handle both the idealized SR process (by removing the wait-
ing times τw) and the actual physical process implemented in
the trap (by keeping the whole time-series). For the idealized
case, all appropriate thermodynamic quantities can be mea-
sured in particular the non-equilibrium free energy difference
∆f of resetting evaluated on one single resetting event, i.e. the
instantaneous jump from a random position xt to a determin-
istic reference x = 0. From this, the non-equilibrium second
laws can be derived and the features of the Maxwell demon
quantified. In parallel, the full thermodynamic cost of our
physical platform is assessed by applying to the full Langevin
trajectories including waiting times the methods of stochas-
tic energetics [27]. We will show below that the total work
Wext externally needed to maintain the system in its non-
equilibrium steady state is bounded by this non-equilibrium
free energy difference ∆f . Involving full trajectories, Wext

depends on the actual protocol used to reset, in sharp con-
trast with the bound ∆f , that only depends on the resetting
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parameters. Our experiment allows us to approach this ideal
bound, by slowing down each individual resetting event, at a
constant resetting rate. By considering resetting as an erasure
process necessarily accompanied by a loss of information, the
energetic bound is endowed with an informational dimension:
the Landauer’s limit. In the real system, the physical work
Wext can be pushed down to this limit by smoothing each re-
setting event towards a quasistatic protocol. Fundamentally,
erasing information necessarily implies a breaking of ergod-
icity that we do observe on the recorded trajectories. It is a
clear asset of our experimental platform to be able to reveal,
in a straightforward way, the profound connections between
the non-equilibrium second law, erasure of information and
ergodicity breaking.

Our experimental setup (sketched on Fig. 1, upper panel
and detailed in Appendix A) consists of a 3 µm polystyrene
sphere diffusing in a fluidic cell filled with water at ambient
temperature T = 296 K. A laser beam (820 nm, CW) is
focused through a high numerical aperture objective onto the
fluidic cell in order to induce a harmonic optical potential in
the vicinity of the focal waist. A secondary low-power laser
beam acts as a passive probe, allowing to record in real-time
the position xt of the microsphere (throughout the paper, xt

refers to the stochastic position at time t while x is the stan-
dard space variable). The stiffness κ of the harmonic confine-
ment is linearly related to the intensity of the trapping beam
controlled by using an accousto-optic modulator controlled
numerically (see details in Appendix A). If the stiffness of
the optical trap is low κ = κmin, the particle explores a shal-
low potential, with diffusion coefficient D = kBT/γ given by
Boltzmann constant kB , temperature T and Stokes drag coef-
ficient γ and with relaxation time ω−1

0 = γ/κmin. When the
stiffness abruptly increases to a high value κ = κmax (typ-
ically κmax ≈ 100 κmin), the particle relaxes exponentially
fast towards the center of the potential x = 0, with a character-
istic relaxation time ω−1

max = γ/κmax. This stiffness quench
can be interpreted as a resetting event and to ensure that the
particle is well reset, the potential is kept stiff for a waiting
time τw several times larger than the relaxation time. There,
the remaining fluctuations of the microsphere around x = 0

are as small as
√
kBT/κmax i.e. a few nanometers with typi-

cal experimental values.
In the specific case of Poissonian SR, the duration τ of each

diffusive period where κ = κmin is a random variable drawn
out of an exponential distribution Pr(τ) = λe−λτ with rate λ,
before κ is quenched to κmax. This realization of SR cannot
but depart from an ideal theoretical resetting process due the
non-instantaneous nature of the relaxation to x = 0 (studied
in [17, 28–30]). But an ideal SR process can be recovered if
one removes from the experimental data the transient times
τw when the microsphere is relaxing in the optical trap [31],
obtaining an instantaneous resetting. This is exactly what our
experimental platform allows.

On Fig. 1 (top panel), we show an experimentally recorded
SR process in a potential V (x) = κminx

2/2 with κmin =
3.15±0.13, κmax = 97±4.2 pN/µm with an inverse resetting
rate λ−1 = 1.5 ms. The trajectory is recorded for 300 seconds
at a frequency 215 = 32768 Hz. As explained above, the

points during waiting times τw are removed to approach an
ideal instantaneous SR process. Importantly, the removing
of these sections in the time-series erase the memory of the
trajectory: there is no correlations between the position before
and after each resetting event since τw > ω−1

max. The resetting
events are marked by red arrows on Fig. 1 (top panel) and
the non-exact resetting position is underlined by a red stripe
around x = 0.

FIG. 1. (Upper panel) Simplified view of the optical trapping sys-
tem: a 820 nm laser beam, tightly focused through a high numeri-
cal aperture objective is confining the motion of a 3 µm polysterene
bead in water. (Middle pannel) Experimental trajectory of the bead
diffusing in a potential V (x) = κminx

2/2 (depicted above the tra-
jectory as a blue line), subjected to stochastic resetting (through po-
tential quenches, depicted above the trajectory as a red line) at a rate
λ = 662 Hz. Resetting events towards x = 0 are marked on the
trajectory with red arrows. As detailed in the main text, this instan-
taneous SR process is built from a recorded trajectory subjected to a
time-dependent optical potential by removing the data recorded dur-
ing the waiting times when the stiffness is κmax (see Appendix A
for experimental details). (Lower panel) Probability distribution of
position P (x) of a 300 seconds-long SR process (red triangles) with
rate λ in potential V (x) together with the exact result derived in Ap-
pendix D, with experimental parameters (black solid line). The equi-
librium distribution Peq(x) of a normal Ornstein-Uhlenbeck process
in the potential V (x) (blue circles) is a Gaussian (black dashed line)
as expected for trapped Brownian object. The SR probability dis-
tribution P (x) significantly differs both from Peq(x) and from the
Laplace distribution of a free SR process [1] (black dotted line) show-
ing the combined effect of resetting and confining potential V (x).

Our experimental SR reaches a steady-state distribution
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P (x) that can be compared with an exact result for SR in
a quadratic potential [32]. The distribution, computed as
P (x) = λ

∫∞
0

e−λtG(x|t, x = 0)dt gives the probability for
the particle to diffuse from 0 to x in a time t [18]. Here,
G(x|t, x = 0) is the standard Ornstein-Uhlenbeck propaga-
tor for Brownian diffusion within a potential. We derive in
Appendix D the exact steady-state distribution that general-
izes to real values of the λ/ω0 ratio the known expression for
SR in a harmonic potential [33].

On Fig. 1 (lower panel), we plot the probability distri-
butions built from these decimated trajectories. The agree-
ment between the experimental non-equilibrium steady-state
(red triangles) and the analytical result validates the experi-
mental method and confirms that the decimated experimen-
tal trajectories are very close to those of an ideal SR pro-
cess. The agreement also shows that the experimental er-
ror on the resetting position (red stripe on the upper panel)
can be neglected and that the system can be described as an
ideal SR process in a potential. On the same graph, we plot
in blue the equilibrium distribution of the normal Ornstein-
Uhlenbeck process without resetting. This diffusion in the
harmonic potential V (x) is characterized by a Gaussian dis-
tribution Peq(x) =

√
κmin

2πkBT e
−κminx

2
t/2kBT . It is clear that

the SR process, confining the motion inside the trap, reaches
a distribution that strongly differs from the equilibrium Gaus-
sian density of Brownian diffusion in the harmonic potential
V (x).

Bringing the system into a non-equilibrium steady-state
(NESS), the SR process necessarily consumes and dissipates
energy, both in the ideal case and in the experimental imple-
mentation. For an ideal SR and on the level of single stochas-
tic trajectories, each resetting event is an abrupt change in the
potential energy of the system from V (xt) to V (0). This for-
mally corresponds to a stochastic work ∆w = V (xt)− V (0)
exerted against the external potential. Each resetting event
also implies a change in stochastic Shannon entropy ∆s =
s(xt)− s(0) = kB ln[P (xt)/P (0)] [34]. Therefore, resetting
is characterized by a stochastic change in non-equilibrium free
energy expressed as ∆f = ∆w − T∆s [19]. Importantly,
this quantity is universally valid for any SR process in an en-
ergy landscape V (x), but defined for an instantaneous reset-
ting [2, 14–16].

For our experiments, the energetics of SR can be precisely
described within the appropriate framework where the work,
applied on the system when performing the quench in the trap-
ping stiffness, can be precisely evaluated, as we detail below.
A central result of our work is the experimental demonstration
that the external power needed to maintain the system in this
NESS is bounded from below by the average non-equilibrium
free energy [19]

Ẇext ≥ λ⟨∆f⟩, (1)

where ⟨...⟩ denotes the ensemble average
∫
...P (x)dx per-

formed over the resetting jumps (xt, x = 0). The right-hand-
side of this equation corresponds to an universal quantity, in
the sense that it is independent of the specific method used
to reset. On our platform, it can be evaluated experimentally,

simply by removing the waiting times τw from the trajecto-
ries the idealized scheme described above. In contrast, the
left-hand-side term depends on the precise protocol used to
reset the particle, as analyzed further down. It can also be
evaluated on our platform but this time looking at the whole
trajectories subjected to a time-dependent potential using the
methods of stochastic energetics. One key advantage of our
approach is the possibility to measure both Ẇext and λ⟨∆f⟩
thermodynamic quantities and hence to probe Eq. (1) as a
central experimental constraint.

Removing the waiting times enables a full energetic anal-
ysis of the idealized SR process that reveals the Maxwell de-
mon nature of the system. Importantly, specific entropic re-
lations will emerge from this analysis that will set bounds
on any physical implementation of SR in the form of a non-
equilibrium second law of thermodynamics.

The mean free energy cost of ideal resetting is obtained by
multiplying the stochastic free energy change ∆f by the re-
setting rate λ and performing the ensemble average as

λ⟨∆f⟩ = λ⟨V (xt)⟩ − kBTλ

〈
ln

[
P (xt)

P (0)

]〉
, (2)

accounting for V (0) = 0 in the harmonic regime. The first
term in this expression is the average rate of extracted work
Ẇ = λ⟨V (xt)⟩, which is always positive. It is accompanied
by a heat dissipation due to the non-vanishing probability cur-
rent j(x) = (− 1

γ
dV (x)
dx − D∂x)P (x) maintaining the NESS

distribution different from the equilibrium solution Peq. in the
external potential. Since the current can be evaluated using
the experimental distribution P (x) of the recorded trajecto-
ries, the dissipated heat given by Q̇ =

∫
j(x)dV (x)

dx dx can be
experimentally measured [2]. Since in the idealized frame-
work, the external potential is constant, there is no change in
internal energy. As a direct thermodynamic consequence, the
first law for resetting reads Q̇+ Ẇ = 0.

On Fig. 2 (top panel), we display the heat and work pro-
duction rates evaluated on our experimentally idealized SR
process, as a function of the mean resetting time λ−1, while
keeping the same κmin and κmax. The experimental results
are complemented by numerical simulations (see Appendix B
for details). The sum Q̇+Ẇ vanishes for all resetting rates as
expected from the first principle of thermodynamics. Remark-
ably, Q̇ < 0 for all probed λ−1: heat is effectively absorbed
from the heat bath at a single constant temperature and work is
extracted. This blatantly shows that SR in a confining poten-
tial emulates a true Maxwell demon, confirming the prediction
of [2].

The second term in the non-equilibrium free energy (2) is
proportional to the average rate of stochastic Shannon entropy
change ∆s. The mean resetting entropy production rate is
obtained by averaging ∆s over resetting events:

Ṡrst = λ⟨∆s⟩ = kBλ

∫
ln

[
P (xt)

P (0)

]
P (x)dx. (3)

This quantity does not account for the contribution of the dif-
fusive trajectory between resetting. This contribution enters
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FIG. 2. (Upper panel) Experimentally measured work production
rates Ẇ and heat production rates Q̇ for an SR process with inverse
resetting rates λ−1 ranging from 1.5 to 3.5 milliseconds. Their van-
ishing sum for all λ demonstrates the first law of thermodynamics for
resetting. The experimental data are compared with numerical sim-
ulations (dotted lines) in the same conditions. A minor calibration
error is corrected by comparing a measured variance with a numeri-
cal result (see Appendix B). (Lower panel) Second law of thermo-
dynamics for the same inverse resetting rates λ−1. The medium
entropy production rate, given by the heat dissipation divided by
temperature is negative, as well as the resetting entropy production
rate, as explained in the main text. The total entropy production rate
Ṡtot = Ṡm − Ṡrst is a positive quantity for all λ as expected from
the second law of thermodynamics [2]. The negativity of Q̇ and
Ṡm shows that the system constantly extracts heat from the reser-
voir in order to stay in the non-equilibrium state P (x), operating as
a Maxwell demon.

in the heat production rate, to which is associated a dissipa-
tion of entropy in the medium, Ṡm = Q̇/T . Finally, the total
entropy production rate of a Brownian trajectory experiencing
SR reads Ṡtot = Ṡm+Ṡsys−Ṡrst ≥ 0, as derived in [17]. The
system entropy Ṡsys = kB

d
dt

∫
P (x) ln[P (x)]dx vanishes in

the steady-state [15, 35]. Therefore, here, the total entropy
production rate

Ṡtot = Ṡm − Ṡrst ≥ 0 (4)

is a positive quantity, only reaching zero in the limit of equilib-
rium. As such, it is interpreted as the second law of thermody-
namics for an SR process [2, 18, 19]. On Fig. 2, we show both
entropy production rates as well as Ṡtot, which remains, as
expected, a positive quantity. Ṡtot decreases with λ−1, exper-
imentally verifying this non-equilibrium second law of ther-
modynamics for stochastic resetting. The limit of long λ−1

corresponds to the absence of resetting, recovering an equilib-
rium dynamics.

With Eq. (4), the thermodynamic content of the ideal SR
free energy can be further specified with λ⟨∆f⟩ = Ẇ−T Ṡrst.
As we stressed already above, λ⟨∆f⟩ only depends on the re-
setting rate and on the potential in which diffusion occurs but
does not depend on how resetting is performed. This depen-
dence can be quantified by evaluating the external work actu-
ally involved for driving the potential through a sequence of
successive resetting events, see Eq. (1)

To do so, the full trajectories, including the waiting times
τw are analyzed as Langevin trajectories that experience a
time-dependant potential. In our experiment, the choice of
the individual protocol κ(t) connecting κmin and κmax to im-
plement resetting will change the response of the microsphere
and induce a different energy exchange. In the framework of
stochastic energetics, the work is computed as [17, 27]

W ext(t) = −1

2

∫ t

0

κ̇(t′)x2
t′dt

′ (5)

and the averaged work production rate on a long trajectory
of length ttot ≫ λ−1 (containing many resetting events) is
simply Ẇ ext = W ext(ttot)/ttot. This external applied work
obviously depends on the choice of κ(t) connecting the same
initial κmin and final κmax stiffnesses at the same rate λ. This
protocol-dependence of Ẇ ext needed to maintain SR sheds an
original light on λ⟨∆f⟩ that can be interpreted as a Landauer’s
bound, as we now show.

We start by designing smooth protocols for similar resetting
sequence at a given rate λ, but where each increase in stiffness
for resetting is obeying κ(t) = (κmax−κmin)tanh( tϵ )+κmin.
This allows us to perform SR with protocols ranging from
abrupt step-like changes for small ϵ to slow drivings for large
ϵ ≫ ω−1

max, thus approaching the quasistatic limit.
The different protocols applied between κmin = 2.2± 0.12

and κmax = 95 ± 4.7 pN/µm and ranging from a step-like
protocol to a smooth transition are displayed on Fig. 3 (upper
panel). For each, we record a long time-series of positions xt

and measure the associated Ẇ ext as well as the free energy
λ⟨∆f⟩ = Ẇ − T Ṡrst. These energetics are plotted on Fig. 3
(lower panel) where we can notice that λ⟨∆f⟩ is, as expected,
independent on the choice of κ(t). Strikingly, we observe
that the external work is always larger than this constant non-
equilibrium free energy and that it approaches it asymptoti-
cally as ϵ increases for slower protocols. This clearly demon-
strates the bounding role of the free-energy cost of the ideal
SR process with respect to the external energy needed to ex-
perimentally perform SR, as expressed by Eq. 1. These results
evidently underline the major difference between an idealized
process and its physical implementation.

Let us now turn to the informational nature of SR. In SR,
the instantaneous jump from a stochastic position towards the
center of the potential (with a full loss of correlation with the
past trajectory) effectively erases the information stored in the
random position xt. From this perspective, our experimental
results endow this bound with a new significance in which the
constant λ⟨∆f⟩ corresponds to the Landauer’s limit [36, 37].
We stress that it is through experiments that we are able to
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FIG. 3. (Upper panel) Different protocols κ(t) for a single reset-
ting event connecting the same κmin and κmax. The parameter ϵ
governs the shape of the protocol, ranging from a very abrupt step-
like protocol with ϵ = 1 ms (blue line), to a very slow close-to-
quasistatic hyperbolic tangent protocol for a large ϵ = 250ms (green
line). The relaxation time of the particle in the external potential is
ω−1
0 = γ/κmin = 11.5 ms (the relaxation time in the stiff resetting

potential is ω−1
max = γ/κmax = 0.26 ms). Each class of protocol is

then used for every individual resetting event of a long SR process.
Hence, in each case, the recorded trajectory experiences SR with the
exact same parameters κmin, κmax and λ, the only difference being
the abruptness of every single potential quench. (Lower panel) As-
sociated stochastic work (red circles) experimentally measured with
Eq. (5), applying the standard tools of stochastic thermodynamics to
the full trajectory under time-dependant potential. Landauer’s limit
set by the free energy Ẇ−T Ṡrst measured on the ideal instantaneous
resetting process (black circles and black solid line) is approached for
large ϵ, when each resetting event is closer to the quasistatic limit.
The experimental data are in good agreement with numerical simu-
lations (blue dashed line) performed in the same conditions.

probe both ideal and real situations and quantitatively charac-
terize the thermodynamics at play in the SR process down to
its fundamental Landauer’s bound.

We finally discuss another essential, yet seldom analyzed,
aspect of SR. For a system to operate with information and
memory, ergodicity must be broken on the time scale of the
experiment [38]. In the classical example of a 2-state mem-
ory, non-ergodicity is the condition for micro-states to become
distinguishable and on which information can be stored or
erased [36]. In the case of resetting, memory erasure takes
place with the instantaneous jumps towards the resetting po-
sition, visible only at the level of stochastic trajectories [39].
The presence of these jumps breaks micro-reversibility and
ergodicity by the same mechanism [22]. Landauer’s bound
Eq. (1) setting the minimal cost of operating SR is therefore
closely connected to the non-ergodic nature of the stochastic
trajectories. In this section we will use a strong ergodic cri-
terium to demonstrate the non-ergodic nature of the SR pro-

cess recorded on our platform while verifying the ergodicity
of a normal Brownian diffusion without resetting.

For stationary processes, ergodicity is defined as the equal-
ity of time average and ensemble average in the limit of infi-
nite time and infinitely large ensemble. This definition can
be given an operational form by applying it on the Mean-
Squared-Displacement (MSD) of the Brownian trajectory. In-
deed, for a centered stationary process, the MSD is the first
non-trivial moment and the convergence on a statistical en-
semble of its time-average and ensemble-average is a measure
of the ergodic nature of the process [40, 41].

FIG. 4. (Upper pannel) Time-averaged-MSDs (TA-MSD) of an
ensemble of 800 individual sub-trajectories (light lines from blue
to green) together with the instantaneous ensemble-averaged MSD
(EA-MSD, red solid line). Averaging again all the TA-MSDs over
the ensemble leads to the TEA-MSD (black solid line), which coin-
cides with the EA-MSD. Importantly, the dispersion of TA-MSDs is
due to the intrinsic variability of individual sub-trajectories (as ex-
plained in the main text), revealing the non-ergodicity of the process.
(Lower panel) Ergodic criteria ϵ(∆) quantifying the dispersion of
TA-MSDs both for an equilibrium Brownian motion (BM) in the po-
tential V (x) without resetting (normal BM, blue circles) and an SR
process in the same potential (red triangles). The analytical expres-
sion for ϵ(∆) (black dashed line) coincides with the experimental
result for normal BM while the measured values for an SR process
are significantly different. This demonstrates that, while the disper-
sion of TA-MSD for a normal Brownian motion is due solely to the
finite statistics of the experiment, the dispersion of TA-MSD for the
SR process is induced by an intrinsic variability of sub-trajectories,
breaking the ergodicity of the ensemble. Long time drift in the exper-
imental setup had to be corrected with a method detailed in Appendix
C.

In our case where the SR process reaches a steady state,
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such an ensemble can be built by cutting the long recorded
trajectory into shorter sub-trajectories. Here we study an SR
process with κmin = 2.9±0.15 and κmax = 83±2.1 pN/µm
at a rate λ−1 = 20 × γ/κmax ≈ 6.1 ms. We also verify
ergodicity of a normal Brownian motion in exactly the same
V (x) external harmonic potential. After removing the wait-
ing times, we obtain a 239 seconds-long SR trajectory that is
cut into an ensemble of 800 individual trajectories of a total
time T = 0.3 seconds so that each individual sub-trajectory
contains many resetting events. On this ensemble, a time-
averaged MSD (denoted as TA-MSD) can be computed for
each individual ith trajectory as

TA-MSDi ≡ δxi2(∆) ≡ 1

T −∆

∫ T −∆

0

(
xi
t+∆ − xi

t

)2
dt

(6)
where T is the total time of the measured sub-trajectory xi

t.
On an other hand, an instantaneous ensemble-averaged MSD
⟨δxi2(∆)⟩ (denoted as EA-MSD) can be computed on the
whole ensemble, by summing over trajectories instead of in-
tegrating over time. Finally, both averaging can be combined
and the set of individual TA-MSDi can be averaged on the en-
semble to build the time-ensemble averaged MSD (denoted as
TEA-MSD).

As discussed in details in our previous work [42, 43], a first
necessary condition for ergodicity is the convergence of TEA-
MSD to the EA-MSD in the limit of large T /∆. This is ver-
ified on Fig. 4 (top panel) where we see that the TEA-MSD
is superimposed with the EA-MSD. However, this is only a
necessary condition for ergodicity since it can hide a strong
dispersion of individual TA-MSDi (which is also visible on
Fig. 4 with individual curves from blue to green), implying
that individual sub-trajectories strongly differ from each other,
violating the ergodic condition. Therefore, a strong ergodicity
criterion (both necessary and sufficient condition) is the van-
ishing of the dispersion of TA-MSDi in the large T /∆ limit.

This dispersion of individual TA-MSD is well captured by

the estimator ϵ(∆) =

〈
δxi2(∆)

2
〉
/⟨δxi2(∆)⟩2 − 1 that

can be analytically computed for normal Brownian motion
[43, 44]. The estimator is evaluated on Fig. 4 (lower panel)
both for a normal Brownian motion (blue circles) and the
SR process (red triangles) in the same potential V (x). We
clearly see the non-ergodic nature of SR from the behavior of
ϵ(∆), that does not go to zero for short ∆, in agreement with
previous numerical works [22]. This demonstrates the non-
ergodicity of SR trajectories over all probed time-scales. In
contrast, the evolution of ϵ(∆) in the short ∆ limit for nor-
mal Brownian motion in the same external potential ensures
the ergodicity of the experimental setup when no resetting is
performed. These two results show that resetting is the sole
mechanism breaking ergodicity. Combined with the thermo-
dynamic analysis of above, these results clearly underline the
link between ergodicity breaking and the ability to process in-
formation and hence the capacity of our system to perform as
a Maxwell demon [38] .

In this work, we used a simple optically trapped micro-
sphere to implement a stochastic resetting process within a

potential. The recorded trajectories were analyzed through the
prism of both thermodynamics and ergodicity. Importantly,
the same trajectories were used to explore both an ideal, in-
stantaneous resetting process which has a clear informational
nature, and a real, specific experimental realization analyzed
with the tools of stochastic energetics. From the recorded non-
equilibrium trajectories, we measured the free energy of the
system and tested experimentally both the first and second
laws of thermodynamics in a resetting context. These tests
clearly revealed the Maxwell demon nature of the SR process,
indicating that the performance of resetting must be limited
by an informational bound. Remarkably, each resetting event
corresponds to an erasure process defined in our experiments
from a control parameter that follows a specific protocol. This
led us to devise and implement a test of Landauer’s bound for
the minimal work that needs to be applied on the system for it
to work as a demon. By engineering slow resetting protocols,
we were able to reach experimentally the limit put on the min-
imal power needed to feed a physical SR system. By combin-
ing in our simple experimental scheme the thermodynamics of
information with the stochastic dynamics of microscopic tra-
jectories, we have finally verified the connection between the
capacity to process information and the breaking of ergodic-
ity. This fundamental connection opens promising perspec-
tives, where ergodicity breaking could serve as a quantitative
evaluation and measure of the non-equilibrium properties of
information engines.
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Appendix A: Experimental setup and calibration

Our experimental setup consists in optically trapping, in a
harmonic potential, a single dielectric bead (3 µm polystyrene
sphere) in a fluidic cell filled with dionized water at room
temperature T = 296 K. The harmonic potential is induced
by focusing inside the cell a linearly polarized Gaussian
beam (800 nm, CW 5 W Ti:Sa laser, Spectra Physics 3900S)
through a high numerical aperture objective (Nikon Plan
Apo VC, 60×, NA= 1.20 water immersion, Obj1 on Fig.
5). The intensity of this trapping beam is controlled by an
acousto-optic modulator (Gooch and Housego 3200s, AOM
on Fig. 5) using a digital-to-analogue card (NI PXIe 6361)
and a PYTHON code.

The instantaneous position xt of the sphere along the
optical axis is measured by recording the light scattered off
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FIG. 5. Simplified view of the optical trapping setup. The sphere
is suspended in water inside the Sample cell inserted between the
two objectives Obj1 and Obj2. The 820 nm trapping beam is drawn
in pink. The intensity of this beam controlled by the acousto-optic
modulator (AOM). The instantaneous position of the trapped bead
is probed using the auxiliary 639 nm laser beam, drawn in orange,
whose scattered signal is sent to a high-frequency photodiode.

the sphere of a low-power 639 nm laser (CW 30 mW laser
diode, Thorlabs HL6323MG), sent on the bead via a second
objective (Nikon Plan Fluor Extra Large Working Distance,
60×, NA= 0.7, Obj2 on the figure). The scattered light is
collected by Obj1 and recorded by a photodiode (100 MHz,
Thorlabs Det10A). The recorded signal (in V/s) is amplified
using a low noise amplifier (SR560, Stanford Research) and
then acquired by an analog-to-digital card (NI PCI-6251).
The signal is filtered through a 0.3 Hz high-pass filter at 6
dB/oct to remove the DC component and through a 100 kHz
low-pas filter at 6 dB/oct to prevent from aliasing. The scat-
tered intensity varies linearly with the position of the trapped
bead xt for small enough displacements and we make sure to
work in the linear response regime of the photodiode so that
the recorded signal is linear with the intensity, resulting in a
voltage trace well linear with x(t).

To build an SR process with the expected characteristics,
we rely on the knowledge of the stiffness of the optical trap in
which the particle diffuses. We therefore calibrate the relation
between the voltage send to the AOM driver and the stiffness κ
of the optical potential. On Fig. 6 (a) we show the power spec-
tral density (PSD) of the recorded trajectories for 6 values of
voltages, spanning the beginning of the dynamical bandwidth
of the AOM. An issue here is that, as the stiffness increases,
the motional variance of the microsphere decreases, making it
harder to probe. For stiffnesses larger that circa. 40 pN/µm
we can hardly obtain a good PSD. We can however assume
that the linear increase of κ with driving voltage is unaffected
by this probing issue. We therefore probe the beginning of this
linearity, (driving voltage from 0.01 V to 0.4 V) and extrapo-
late the linear relation on the whole dynamical bandwidth of
the AOM, as shown Fig. 6 (b). This gives a maximal stiffness
κmax = 83.1± 2.1 pN/µm for the resetting event.

From the same PSD fit, we can extract a calibration factor
β by the ration between the amplitude of the measured
PSD in V2/Hz and the expected value in m2/Hz depending

FIG. 6. (Upper panel) Power spectral density of the microsphere
motion for various trapping laser insensity. The circles are experi-
mentally measured PSD, the dashed lines are Lorentzian fits, from
which the cutoff frequency is extracted (blue vertical lines). The
shaded patches represent the limits of the frequencies used for the
Lorentzian fit, we gradually restrain the bandwidth as we go to
high stiffnesses where the measured signal decreases. (Lower panel)
Stiffnesses extracted from the fit of PSDs at different driving volt-
age of AOM (hence different trapping laser intensity) with a lin-
ear fit giving the relation between driving voltage and in situ stiff-
ness. This allow us to know the maximal usable stiffness given this
working power (400 mW in the input of AOM) of Ti:Sap laser at
κmax = 83.1± 2.1 pN/µm.

on the diffusion coefficient of the microsphere in water
D = kBT/γ ≈ 0.16 µm/s. This calibration factor allows to
obtain trajectories in meter out of the recorded time-series of
voltages.

On Fig. 7, we show a full time-series of recorded points
(for a few milliseconds). By removing points during the
waiting times (red stripes) an instantaneous resetting is event,
as presented in the main text.

Appendix B: Numerical simulations

The experimental results presented in this paper are
complemented by numerical simulations. In order to be
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FIG. 7. Small sub-part of an experimental realization of stochastic
resetting. On this figure we show the full time series of both the mod-
ulation potential and the recorded time-series. We highlight with red
stripes the times when the potential is kept stiff, which corresponds
to the resetting events. By removing the points during these times,
one obtains an ideal instantaneous resetting process.

able to reproduce numerically both the ideal instantaneous
resetting as well as the physical realization as we do with
experimental data, we simulate the complete experimental
scheme. Numerical SR process are, like in the experiment,
solutions of Langevin equations in time-dependent external
potential, which stiffness varies from κmin to κmax, both
fed with experimental values. The Langevin equation is
solved using a standard Euler scheme [45]. Both the random
white noise simulating the thermal bath and the random
distributions of times τ used to devise the resetting sequence
are generated using built-in PYTHON pseudo-random number
generators.

The trajectories obtained from these simulations are
fully comparable to the experimental time-series and can
be analyzed the same way. They are used to correct small
calibration offset in the recorded trajectory, obtained by
comparing the motional variance of simulated and recorded
trajectories in a steady-state. This is a constant correction
on calibration factor β̃ = 0.822 β that does not change the
dynamics of any observed effect.

Appendix C: Ergodicity and drift correction

Ergodicity of the stochastic processes at play is evalu-
ated with a statistical ensemble of individual sub-trajectories,
drawn out of a long time-series of position xt.

On Fig. 8 (a) we show a schematic representation of how
a statistical ensemble is built out of a single time-series of
position. On each individual sub-trajectory, we can compute
the time-averaged mean-square-displacement (TA-MSD)

TA-MSD ≡ δ2x(∆) ≡ 1

T −∆

∫ T −∆

0

(
xi
t+∆ − xi

t

)2
dt

(C1)

FIG. 8. (Upper panel) Schematic representation of the method used
to build an ensemble out of a single long time-series of position,
from a single 2.5 seconds trajectory to an ensemble of 10 individual
0.25 seconds sub-trajectories. (Lower panel) Associated 10 individ-
ual TA-MSD.

where T is the total time of the measured sub-trajectory.
Because of the finite size of sub-trajectories, a dispersion
is still visible on the ensemble TA-MSD as seen on Fig. 8
(b). Ergodicity, as explained in the main text, is probed by
looking at the evolution of this dispersion as a function of
T /∆, a necessary and sufficient condition for the process
to be ergodic being the vanishing of the dispersion for short
∆. However, if the experimental setup suffers from low
frequency drift on the 300-seconds long experiments, this
dispersion will we combined with a systematic trend, that
will lead to an overestimation of the ergodic parameter
ϵ(∆) ∼ var(TA-MSD). In this Appendix, we propose a novel
method to decipher systematic from statistic dispersion of
TA-MSD, by relying on their very short-time limit. This
allows to correct drifts and clearly unveil the different
between ergodic normal Brownian motion in a potential from
non-ergodic SR process.

We consider here, as in the section of the main text focused
on Landauer’s limit, a 300 second long trajectory that can
be recast into an ensemble of a thousand sub-trajectories
of 0.3 seconds each, diffusing in an optical potential of
stiffness κmin = 2.9± 0.15 pN/µm. We study both a normal
Brownian motion diffusing in the aforementioned potential
as well as an SR process in the same potential, but in which
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the optical potential is increased to κmax ≈ 83 pN/µm
at a rate λ−1 = 20 ω−1

max ≈ 6.1 ms. Each TA-MSD is
computed as a time integral on individual sub-trajectories
of total time T = 0.3 seconds. By comparing TA-MSDs at
different absolute times, we can detect low frequency drifts.
To achieve the best accuracy, we probe TA-MSD for very
short time-lag ∆ = 0.061 ms where the statistical dispersion
of TA-MSD is the smallest.

FIG. 9. (Upper panel) Short time-lag TA-MSD δ2xi
(∆ =

0.061[ms])) for each individual chronologically ordered sub-
trajectories as a function of the absolute time in seconds. We clearly
observe a systematic trend, that is well captured by the combination
of linear decrease and a ≈ 10 s sinusoidal evolution. The magnitude
of the drift is of the order of 1.4 nm of mean displacement. (Lower
panel) Associated ergodic parameter, both for a normal Brownian
motion in a potential of stiffness κmin and for an SR process in the
same potential. We show the raw data measured from the calibrated
photodiode as well as the same observable on data where the 1.4 nm
mean displacement drift on the 300 s has been corrected.

On Fig. 9 (a) we show the value of TA-MSD at
∆ = 0.061 ms from blue to green for each chronologically
ordered sub-trajectory as a function of the absolute time of the
experiment. It corresponds to a vertical cut in a TA-MSD plot
such as displayed Fig. 8 (b). We can observe, superimposed
to the expected dispersion a systematic trend. We fit the
behaviour with a guess function, combination of negative
constant slope and a 10 second sinusoidal oscillation. The
fit gives the black continuous line on Fig. 9 (a) and is used
to correct as a function of time the calibration factor used to
convert the measured voltages into meter.

On both the raw measured data and the data corrected
with the aforementioned method, we compute the ergodic
parameter ϵ(∆) probing the dispersion of TA-MSD as a
function of lag-time ∆. On Fig. 9 (b) we show the effect of
drift correction. We show the ergodic parameter ϵ(∆) for a
normal Brownian without correction (blue circles) and with
calibration correction (red triangles). Remarkably, the minute
correction fitted on the short time-limit of TA-MSD very
neatly recast the ergodic parameter on the expected analytical
result (black dashed line), computed for a Brownian motion
in a potential of stiffness κ = 83 pN/µm. This proves
that the short time-lag deviation of ϵ for normal Brownian
motion is solely due to drift and not to a physical ergodicity
breaking. On the other hand the ergodic parameter evaluated
on the SR process is strongly departing from this trend and
does not vanishes for short ∆. Furthermore, the magnitudes
of ϵ probed are significantly larger and are therefore not
affected by the drift (the statistical dispersion of TA-MSD is
larger than the systematic trend) as seen in the equality of
the ergodic parameter for the raw data (yellow squares) and
corrected data (purple stars). This assesses the validity of the
test: the deviation for SR process is not due to a drift, but to a
physical ergodicity breaking.

Appendix D: Stationary distributions

Trapped Brownian trajectories undergoing an SR process
are distributed according to a steady-state probability distri-
bution function that depends both on the confining potential
and the resetting parameters. In our case, the Brownian mi-
crosphere is optically trapped in a locally harmonic potential
V (x) = 1

2κminx
2, where κmin ∼ 10−6 N/m is the stiffness

of the confining potential (in contrast with κmax ∼ 10−4 N/m
which corresponds to the potential quench associated with
each resetting event). This confining potential, together with
the viscous drag γ experienced by the microsphere in the fluid,
induces a characteristic pulsation ω0 = κmin/γ ∼ 10−3 s in
the dynamics.

The steady state solution for the Fokker Planck equation
with stochastic resetting is [18]

P (x) = λ

∫ ∞

0

dτe−λτG(x|τ, 0), (D1)

where λ is the rate of the Poissonian stochastic resetting and
G(x|τ, 0) is the propagator of a given stochastic process that
is reset to. For a Wiener process, the propagator is

G(x|τ, 0) = 1√
4πDτ

exp

(
− x2

4Dτ

)
. (D2)

Therefore, the corresponding integral to solve is

P (x) =
λ√
4πD

∫ ∞

0

dτ√
τ
exp

[
−
(
λτ +

x2

4Dτ

)]
(D3)
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now, let u =
√
τ , the integral becomes then

P (x) =
λ√
πD

∫ ∞

0

du exp

(
−λu2 − x2

4Du2

)
=

1

2

√
λ

D
exp

(
−
√

λ

D
|x|

)
.

(D4)

This corresponds to an exponential distribution.
For a Ornstein-Uhlenbeck process, the propagator is given

by

G(x|τ, 0) =
√

ω0

2πD(1− e−2ω0τ )
exp

(
− ω0

2D
· x2

1− e−2ω0τ

)
,

(D5)
where the parameter ω0 = κ/γ. For simplicity, we define
a = ω0/2D and b = 2ω0. Thus, the steady state PDF can be
written as

P (x) =

√
a

π

∫ ∞

0

dτre−λτ 1√
1− e−bτ

exp

(
− ax2

1− e−bτ

)
.

(D6)
Applying the change of variable u = e−λτ leads to e−bτ = up

where p = b/λ. The integral thus becomes

P (x) =

√
a

π

∫ 1

0

du
1√

1− up
exp

(
− ax2

1− up

)
. (D7)

A second change of variable defined by w = 1 − up, where
du = − 1

p (1 − w)
1
p−1dw, gives the expression for the proba-

bility distribution

P (x) =

√
a

π

∫ 1

0

dw
1

p
(1− w)

1
p−1w−1/2 exp

(
−ax2

w

)
.

(D8)
According to Gradshteyn & Ryzhik 3.471.2 [46], our integral
leads to the final result:

P (x) =
1

p

√
a

π
Γ

(
1

p

)
e−

ax2

2

(
ax2
)− 1

4 W 1
4−

1
p ,

1
4
(ax2),

(D9)
where Wk,m(x) is the Whittaker function.

The result Eq. (D9) is used in the main text and agrees with
the experimentally measured distribution for an SR process

in a harmonic potential. This agreement validates our exper-
imental realization of SR. On Fig. 10, we show the agree-
ment between experimentally measured steady-state distribu-
tions and the result Eq. (D9) for various resetting rates, rang-
ing from 283 to 795 Hz. The analytical expression captures
the experimental behavior on a large spacial range as well as
on an extended parameter variation. One can note that the
steady-states share a sharp central peak, similar to the expo-
nential distribution of free SR process, while the tails tends
to follow the (Ornstein-Uhlenbeck) Gaussian tails. For small
λ/ω0, the distribution is closer to the Gaussian correspond-
ing to a trajectory without resetting while the distribution is
progressively more sharply peaked around the resetting posi-
tion x = 0 when the resetting rate increases, departing more
strongly from the Gaussian distribution.

FIG. 10. Experimental histograms (triangles) together with the ex-
act distribution Eq. (D9) (solid lines) for a large range of resetting
rates from λ = 283 Hz to λ = 795 Hz while ω0 = 159 Hz. As a
comparison, the Gaussian probability distribution of a Brownian tra-
jectory in the same potential V (x) with the characteristic pulsation
ω0 is shown (black dashed line) together with the associated experi-
mentally measured histogram (blue circles).

Importantly, this result generalizes the expression known in
the literature for SR in a harmonic potential. This expression
is expressed in terms of negative order Hermite’s polynomials
[33, 47]. Indeed, if the two results coincides exactly for inte-
ger values of λ/ω0, our result, based on the Whittaker function
is not restricted to integer ratio between the resetting rate and
the characteristic pulsation, since the parameter k and m of
Wk,m(x) function can take arbitrary real values.
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