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ABSTRACT: The strong coupling regime of light−matter
interaction has recently been extended to IR active molecular
vibrations coupled to microcavities, resulting in the formation
of so-called vibro-polaritonic states. Here we demonstrate the
emissivity of such hybrid states. Using thermal excitation, we
achieve polaritonic IR emission from a strongly coupled
polymer. Thermal excitation of vibro-polaritons, thus,
constitutes an original way of establishing sizable excited-
states populations in strongly coupled systems and opens new
routes to the study of interacting vibro-polaritons.
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1. INTRODUCTION

Some of the earliest work on light−matter strong coupling
involved the theoretical study of the interaction between
surface plasmon polaritons and a resonant material by
Agranovich and Malshukov.1 This inspired the first exper-
imental demonstration of strong coupling involving a phonon
mode of an inorganic salt LiF, reported in 1975.2 Subsequently,
strong light−matter interaction was studied with molecular
excitons of J-aggregates in the early 1980s,3 as well as with
inorganic semiconductors.4−6 In spite of the rapid development
of strong coupling in inorganic semiconductors,7−9 it would
take another 16 years before two more examples of light-
molecule strong coupling were reported.10,11 Since then, the
hybridization of molecular electronic transitions with optical
resonances has attracted considerable attention, leading to
many experimental achievements such as nonequilibrium
Bose−Einstein condensation (BEC) of polaritons,12−16 super-
fluidity,17 enhanced conductivity,18 and new energy transfer
mechanisms,19−21 and to much theoretical insights and
progress.22−28 Another fascinating aspect of exciton-photon
strong coupling is the possibility to achieve new material
properties resulting from the formation of polaritonic states.29

Following the first experimental demonstration of a modified
photochemical reaction under strong coupling,30 this emerging
field of research is currently attracting a great interest from both
theoretical31−37 and experimental perspectives.38,39

In this context, achieving similar behaviors within the
electronic ground state manifold, that is, strong coupling a
vibrational transition (VSC),40−47 appears as a key step toward
new material science and chemistry.29 In particular, the first
experimental demonstration of modified chemistry under VSC
has recently been reported in the context of the deprotection
reaction of a simple alkynylsilane,48 and further extensions of

VSC toward biochemical systems are also being explored.49

Coherent energy exchange and modified relaxation dynamics of
vibro-polaritons has recently been demonstrated by time-
resolved IR spectroscopy50 and signatures of modified potential
energy surfaces were theoretically predicted in the calculations
of two-dimensional spectra.51 Moreover, polariton−polariton
interaction in the vibrational ultrastrong coupling regime and
the consequent appearance of polaritonic band-gaps52 holds
promises for the observation of many-body phenomena such as
BEC. In view of these recent developments, vibro-polaritonic
emission is a key observable that so-far remained unexplored.
Herein, we measure the polaritonic emissivity from a typical

molecular system used in the VSC regime, an organic polymer
(poly(methyl methacrylate), PMMA) embedded in a metallic
Fabry-Peŕot (FP) cavity, resonantly tuned to one of its IR
vibrational transitions. When targeting the high oscillator
strength CO stretching band of the polymer, we reach the
strong coupling regime, resulting in the formation of the hybrid
light−matter states |P+⟩ and |P−⟩, as schematically shown in
Figure 1. By heating up the strongly coupled system, we
thermally excite a population of vibro-polaritons, the radiative
decay of which is directly measured using IR emission
spectroscopy. Angle-resolved emission spectra are presented
together with theoretical models allowing us to assess the
thermalization of the vibro-polaritons.
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2. RESULTS AND DISCUSSION
We show in Figure 2a the IR transmission spectrum of a 2 μm
thick PMMA film spin-coated on top of a germanium (Ge)
substrate. This spectrum reveals multiple sharp lines, associated

with different IR active intramolecular vibrational modes of the
polymer. Superimposed on these lines, we observe a slowly
varying envelope, which corresponds to FP interferences in the
PMMA layer, between the air and the Ge substrate. The strong
vibrational band at 1732 cm−1 (Figure 2b blue curve, 27 cm−1

full width at half-maximum) originates from the CO
stretching mode of the polymer backbone (see structure in
Figure 2a, inset) and is the molecular resonance that we will
target to achieve VSC. The black dashed curve superimposed
on this spectrum is the result of transfer matrix calculation
obtained by solving Maxwell’s equations for the air-Ge-PMMA-
air multilayer and fitting the PMMA dielectric function to a
Lorenz model with multiple resonances.40,52

The IR cavity is fabricated by first sputtering a 10 nm Au
mirror onto a Si wafer. A thin PMMA layer is then spin-coated
on the Au mirror and baked for 1 h at 100 °C to relax the strain
in the polymer film and to evaporate the remaining solvent.
Finally, a 10 nm layer of Au is sputtered on the film to form the
FP cavity, whose modes positions are determined by the
thickness of the PMMA layer. By spin-coating a 4 μm thick

Figure 1. Energy level sketch of the strong coupling between an
ensemble of identical molecular vibrational transitions (left) and the
IR resonant optical mode of a Fabry-Peŕot cavity (right). The
collective vibro-polaritonic eigenstates of the coupled systems |P±⟩ are
separated by the Rabi splitting ℏΩR, proportional to the light−matter
coupling strength.

Figure 2. (a) IR transmission spectrum of a 2 μm thick PMMA layer (molecular structure in inset) spin-coated on top of a Ge substrate. (b) IR
transmission spectra of the resonantly coupled PMMA cavity (green curve), compared to the bare PMMA transmission spectrum (blue curve). The
transfer matrix predictions are shown by the black dashed curves. (c) Angle-resolved transmission spectra measured under TE illumination (left) and
the corresponding transfer matrix prediction (right). The solid curves are the fitted solution of the coupled oscillators model (eq 9) and the white
dashed curves are the dispersions of the corresponding uncoupled modes. The lower panel shows the photonic (|w−|

2, cyan curve) and the
vibrational fractions (|x−|

2, orange curve) composing the lower polaritonic state. The non-RWA terms |y−|
2, |z−|

2 are shown in green.
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PMMA film, we obtain a FP cavity with a 866 cm−1 free
spectral range (FSR), and a quality factor of about 25. The
resonant coupling between the second cavity mode and the
CO stretching band of PMMA results in a cavity
transmission spectrum displaying normal modes splitting of
142 cm−1 (Figure 2b, green curve), amounting to about 8% of
the bare vibrational transition frequency and firmly placing our
system in the VSC regime. This behavior is accurately
reproduced by the transfer matrix calculation using the
previously determined dielectric function of PMMA (dashed
black curves). The slight Gaussian broadening of the
experimental cavity spectrum is due to inhomogeneities in
the PMMA film thickness, averaged over the region probed by
the spectrometer (ca. 9 mm2).
In order to further establish the hybrid light-matter nature of

the new normal modes, we now investigate the dispersion
diagram of the coupled system, using angle dependent
transmission spectroscopy. As shown in Figure 2c in units of
the conserved in-plane light momentum k∥ and under
transverse electric (TE) polarization, the two vibro-polaritonic
eigenstates undergo an avoided crossing about the vibrational
CO resonance energy (1732 cm−1, white horizontal dashed
line) as they disperse toward asymptotically uncoupled
molecular and optical modes. The corresponding angle-
dependent transfer matrix simulations, shown in the right
panel of Figure 2c is again in close agreement with the
measured data, albeit yielding slightly sharper modes. The
expression of these new eigenstates in terms of the bare
molecular and cavity modes can be derived from the following
dipolar Hamiltonian, describing the coupling between a
collective assembly of vibrational dipoles P(0) = ∑i=1

N pi,
assumed to be localized at the cavity field maximum r = 0,
and the electric displacement D(r) of a single mth order
longitudinal mode of the cavity:52
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where ε0 is the vacuum electric permittivity and Vν corresponds
to the intracavity volume occupied by the molecules. The cavity
field Hamiltonian Hcav
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where the dispersive energy of the cavity mode of length L and
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as represented by the white dashed parabola in Figure 2c.
Describing the CO molecular stretching mode in the
harmonic approximation,40 we define the collective vibrational
Hamiltonian through the vibrational position Qν,i and
momentum Pν,i quadratures as
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where ων,i is the frequency of the coupled vibration. The last
term in eq 1 describes the dipolar self-energy of the molecular
vibrations, at the origin of the depolarization shift observed
when the light−matter coupling strength approaches ων,i.

53

Following the bosonization procedure detailed elsewhere,52 the
Hamiltonian (eq 1) can be written in terms of the photonic and
collective vibrational operators as

κ= + − ℏΩ − + + +† † †H H H i a a B B B B( )( ) ( )m
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(5)

where a = (Qc + iPc)/2 and B =∑i = 1
N (Qν,i + iPν,i)/(2√N). The

collective coupling energy between the zero-point fluctuations
of the field and of the vibrations, leading to the normal mode
splitting writes as
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where μi is the oscillator reduced mass and
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Diagonalizing this Hamiltonian through the Hopfield proce-
dure54 yields the vibro-polaritonic normal mode operators

= + + +± ± ± ±
†

±
†P w a x B y a z B (8)

associated with the eigen-energies ω±:

ω χ=± ± ±P H[ , ] (9)

The resulting dispersive vibro-polaritonic energy branches are
fitted to the experimental data as shown by the blue and red
curves in Figure 2c, yielding a coupling strength of 133 cm−1. In
this fitting process, the coupling strength is the only free
parameter since both the CO vibration and the cavity mode
energies can be experimentally determined independently. The
squared modulus of the mixing coefficients (w,x,y,z)±, reported
in the lower panel of Figure 2c, show that the vibro-polaritonic
states share a 50:50 light-vibration character at normal
incidence. Moreover, for our relative coupling strength ΩR/
ων ≃ 8%, the antiresonant contributions y± and z± usually
neglected in the rotating wave approximation (RWA) remain
close to zero.54,55

Given this vibro-polaritonic mode structure, as revealed by
IR transmission spectroscopy, we now demonstrate that the
excited state polariton population in such systems can be
conveniently characterized by thermal emission spectroscopy.
This technique, firmly established in various research fields
ranging from polymer sciences56,57 to mineralogy58,59 and
astronomy,60 has yet to be applied to the study of strongly
coupled molecular systems. This holds, in part, to the fact that
materials traditionally used for strong coupling are not
compatible with the high temperatures needed to thermally
excite a sizable population of polaritons, and one has to rely on
optical or electrical excitation to study their excited states
properties. In this respect, VSC of polymer films offers a unique
combination of low energy vibrations and relatively high
thermal resistance. For instance, the unzipping of PMMA
polymer chains only occurs around a temperature of 155 °C.57

The field of IR emission spectroscopy is based on the
comparison between the emission L recorded from the sample
of interest, and that of a blackbody LBB maintained at the same
temperature T. Indeed, the IR emission spectrum of a sample in
thermal equilibrium is directly related to its absorption
spectrum A by Kirchhoff’s law:61
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where ν is the spectroscopic wavenumber. This relation
between IR emission and absorption allows the investigation
of molecular bonds vibrations in samples for which trans-
mission and reflection spectroscopy are not easily applicable.
Examples of such samples are highly absorbing and scarcely
reflecting materials, opaque and diffusing samples, and
interstellar objects. Alternatively, since Kirchhoff’s law is only
valid for samples in thermal equilibrium, the independent
determination of the IR absorption and emission allows one to

assess the thermalization of the sample under study by
comparison to a blackbody emission. However, an exper-
imentally measured blackbody emission always deviates from
the ideal theoretical Planck’s law due to imperfections in the
instrument, thermal emission from the detector and back-
ground radiation from the heating stage and from the rest of
the instrument. The deviations arising from background
radiation can be accounted for by measuring the emission
from a reference sample Lref under the same experimental
conditions. Moreover, the instrument response function (IRF)
can be determined as the ratio of the measured blackbody to

Figure 3. (a) Emissivity spectrum of a 4 μm thick film of PMMA at 100 °C (red curve). The transmission spectrum of PMMA is shown for
comparison (blue curve). (b) Emissivity (red curve) and simulated cavity reflection spectrum (black dashed curve) of the strongly coupled cavity at
100 °C. (c) Angle-resolved TE emission spectrum of the strongly coupled cavity corrected for the IRF and coupled-oscillator fit obtained from the
previously determined parameters with a thermal expansion of 115 nm of the active layer. The corresponding Hopfield coefficients for |P−⟩ are
shown in (e), with the photonic fraction (cyan), the vibrational fraction (orange), and the non-RWA terms (green). (d) Normal incidence spectra of
the strongly coupled cavity: emission (red), absorption (black), transmission (blue), and its transfer matrix fit (green dashed curve). The
transmission spectra are multiplied by 10 for clarity. The emission is corrected for the IRF. (f) Normal incidence emission-over-absorption ratio
(blue curve), compared to the expected blackbody distribution at 100 °C (black dashed curve).
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the difference of the theoretical blackbody at the sample and
detector temperatures:62,63

ν
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The theoretical blackbody emission is given by Planck’s
function

ν ν=
−νH T

hc
e

( , ) 2
1hc k TBB
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/ B (12)

where h and kB are the Planck and Boltzmann constants,
respectively. The difference in the denominator of eq 11
accounts for the balance in radiation flux from the sample and
the detector. The emissivity spectrum of the sample ϵ is defined
as

ν ν
ν

ϵ = −L T L T
L T

( , ) ( , )
( , )

ref

BB
(13)

where the IRF affecting each single beam measurements cancel
out.
The thermal emissivity spectrum of a 4 μm thick PMMA film

spin-coated onto a Si wafer and heated up to 100 °C is shown
in Figure 3a (red curve), together with the bare PMMA IR
transmission spectrum (blue curve, see the Methods section for
experimental details). We clearly see in this figure that the
emissivity spectrum reproduces the vibrational features
observed in transmission, as expected from Kirchhoff’s law in
a system with a Boltzmann occupancy of excited states. This is
further evidenced by comparing the emission-over-absorption
ratio of the thin film to the expected Planck function. As shown
in Figure S2c of the Supporting Information, this ratio can
indeed be fitted by a Planck function for a temperature of 100
°C (black curve) at the wave numbers corresponding to
vibrational transitions (nonshaded regions).62

We show in Figure 3b (red curve) the normal incidence
emissivity spectrum of the strongly coupled cavity, obtained by
dividing the thermal emission spectrum of the cavity at 100 °C
(Figure S1b, Supporting Information) by the blackbody
emission. This spectrum shows a series of asymmetric peaks
at the different cavity modes energies, as well as vibro-
polaritonic emission near 1700 cm−1. Contrary to what has
been reported in the electronic strong coupling of organic
materials, where scattering results in the suppression of the |P+⟩
emission,64,65 we do observe comparable emissivity from both
the upper and the lower vibro-polaritonic states. The
asymmetric line shape, although surprising at the first glance,
correlates well with the simulated cavity reflection spectrum,
obtained from the fit of the cavity transmission spectrum,
measured at 100 °C (see Figure 3d). From the transfer matrix
simulations, we can trace back this asymmetry to the frequency
dependence of the refractive index of the Au mirrors. The
thermal emissivity of the bare cavity modes is also expected
from Kirchhoff’s law, given the finite energy dissipation at these
modes energies in the polymer and in the Au mirrors. Hence,
the emission from uncoupled cavity modes can be attributed to
the filtered polymer film emission, as well as to thermal
emission of the Au mirrors, a contribution that could be
minimized by using dielectric mirror cavities.44

The angle-resolved TE emission spectrum of the vibro-
polaritons at 100 °C, corrected for the IRF, is shown in Figures
3c and S4, together with a coupled oscillator fit. By comparing

this coupled oscillator fit to that obtained at room temperature
in Figure 2c, we notice a slight thermal expansion of the
intracavity layer by 115 nm, while all the other parameters of
the system remain unchanged. Contrary to the emissivity data
presented in Figure 3a,b, the emission dispersion diagram of
panel (c) is not divided by a blackbody spectrum, thus, allowing
the observation of the actual vibro-polaritons populations.
Dispersive contributions from both the upper and lower vibro-
polaritons are clearly identified, with a stronger emission
coming from the bottom of the |P−⟩ branch. Such an intensity
distribution is very suggestive of an interaction-mediated
polariton relaxation mechanism, akin to those required for
polariton condensation in other strongly coupled systems.12,66

Alternatively, it could be related to the angle-dependent
photonic and vibrational mixture composing the polaritonic
states67 (see Figure 3e). As shown in Figure S5 of the
Supporting Information, cavities of various detunings, yielding
different photonic and vibrational contents of the polaritons, all
display the same qualitative behavior with a higher emission
intensity from the bottom of the |P−⟩ branch. These
observations point toward the absence of a relaxation
bottleneck for vibro-polaritons, as opposed to what has been
reported in the context of electronic strong coupling.68,69

Further experiments are however needed to address this point,
a detailed study of the temperature and detuning dependence
of vibro-polariton emission being beyond the scope of this
paper.
Interestingly, a close examination of the spectra of Figure 3b

reveals that the polaritons emissivity peaks are blue-shifted with
respect to the corresponding reflectivity dips. This offset,
amounting to 17 cm−1 for |P−⟩ and 6 cm−1 for |P+⟩, is absent for
the uncoupled 1st and 3rd cavity modes (see also Figure S5a of
the Supporting Information). This behavior is clearly displayed
in Figure 3d, where we compare the emission spectrum of the
polariton to their transmission and absorption spectra.
Surprisingly, the polariton emission peaks lie in between the
transmission and the absorption maxima, in striking contrast to
what would be expected from Kirchhoff’s law. This non-
thermalized population distribution of vibro-polaritons is
further evidenced by comparing their normalized emission-
over-absorption spectrum to the theoretical blackbody
distribution. While Kirchhoff’s law holds for the nonzero
background emission of the system, it clearly fails near the
vibro-polaritons energies (Figure 3f). As displayed in Figure
S5b of the Supporting Information, the nonthermalized part of
the polariton emission is more pronounced on the high energy
side of the polaritonic modes, an important information for a
detailed microscopic model of polariton−polariton interactions.
Indeed, the origin of the blue-shifted vibro-polariton emission is
probably due to polariton−polariton interactions as already
observed in inorganic systems.70,71 We further verify in Figure
S2 of the Supporting Information that both the bare PMMA
film and the empty FP cavity modes do satisfy Kirchhoff’s law,
ruling out the possibility that the reported polariton emission
originates from a simple optical filter effect. Thus, the
observation of nonthermalized emission from the strongly
coupled cavity constitutes a direct proof of genuine polaritonic
signatures in the IR emission spectrum. Conversely, it illustrates
how strong coupling a thermalized emitter to a structured
electromagnetic field can result in polaritonic states with
modified relaxation pathways and dynamics.
In summary, we have demonstrated the emissivity of vibro-

polaritonic states in a strongly coupled polymer microcavity. By
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thermally promoting a broadband population of vibro-polar-
itons, we characterized their emissivity spectra and momentum
distributions. Our results show that the polaritonic emission is
not thermalized. This observation points toward vibro-polariton
interactions leading to nonthermalized state occupancy and lays
the ground for the investigation of vibro-polariton condensa-
tion. This study establishes polariton IR emission spectroscopy
as a complementary approach to recent experiments on time-
resolved dynamics,50 opening the possibility to investigate
energy transfer processes in the vibrational strong coupling
regime.

3. METHODS

3.1. Sample Preparation. To prepare the active layer, a
concentrated solution of PMMA (16 wt %) was first prepared
in trichloro ethylene. Both PMMA (Mw = 996000) and
trichloroethylene were purchased from Sigma-Aldrich and used
without any further purification. The solution was then spin-
coated at a high speed (ca. 5000 rpm) to form a 4 μm thick
film.
3.2. FTIR Emission Spectroscopy. The measurements

were performed on a Bruker FTIR Vertex 70 spectrometer, by
keeping the sample of interest in the side input port. Emission
spectra were recorded using a liquid nitrogen cooled mercury−
cadmium−telluride detector, with a resolution of 4 cm−1. The
sample was mounted on a computer-controlled rotating stage
and heated from the back by a Peltier stage. The surface
temperature of the sample was kept constant throughout the
study and was continuously monitored by a thermocouple. The
cavity emission spectra were referenced to that of a 20 nm Au-
coated Si wafer, measured at the same angles. The bare film
emission spectra were referenced to that of a bare Si wafer.
Emissivity data were obtained by normalizing these referenced
spectra to the emission of a homemade blackbody sample,
obtained by coating a Si wafer with a thick layer of carbon soot.
Each single beam measurements were normalized by the
instrument response function (IRF). The IRF R(ν), deter-
mined as the ratio of the emission of carbon soot to the
balanced Planck distributions of the sample and the detector,
see eq 11, is shown in Figure S1(a), black curve.
3.3. Transfer Matrix Simulations. The fit of transfer

matrix simulation to the bare PMMA film transmission
spectrum was obtained using the following multi-Lorentzian
dielectric function for PMMA:

∑ϵ = ϵ −
− + Γ=

k
f

k k ik
( )

j

N
j

j j
B

1
2 2

(14)

where ϵB is the background dielectric function of the medium
and f j, kj, and Γj are, respectively, the oscillator strength, the
resonant wavenumber, and the damping constant of the
vibrational band j. The best fit was achieved for the set of
parameters given in Table 1. This dielectric function was
further used to simulate the strongly coupled cavity spectra.
The refractive indices of Ge and Si were obtained from the
literature,72 and the thin Au mirror refractive index was

obtained from a modified Lorenz-Drude equation as described
elsewhere.40
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