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Harvesting information to control nonequilibrium states of active matter
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We propose to use a correlated noise bath to drive an optically trapped Brownian particle that mimics active
biological matter. Due to the flexibility and precision of our setup, we are able to control the different parameters
that drive the stochastic motion of the particle with unprecedented accuracy, thus reaching strongly correlated
regimes that are not easily accessible with real active matter. In particular, by using the correlation time (i.e.,
the “color”) of the noise as a control parameter, we can trigger transitions between two nonequilibrium steady
states with no expended work, but only a calorific cost. Remarkably, the measured heat production is directly
proportional to the spectral entropy of the correlated noise, in a fashion that is reminiscent of Landauer’s
principle. Our procedure can be viewed as a method for harvesting information from the active fluctuations.
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I. INTRODUCTION

Chemical and biological nonequilibrium processes reveal
the special role played by fluctuations at mesoscopic scales,
raising fascinating questions that form a major topic of current
transdisciplinary research [1–3]. The combined development
of stochastic thermodynamics and optical trapping exper-
iments offers an appropriate framework to describe such
processes [4,5]. Recently, active fluctuations were injected
inside optical traps by adding correlated noises to the trapping
potential [6–8], thus providing optomechanical models of ac-
tive matter that can be studied in close relation with theory
[9–11].

In this work, we follow this approach to decipher the
energetics engaged between nonequilibrium states and corre-
lated baths [12–14]. To do so, we bring an optically confined
microparticle in an active-matter-like nonequilibrium steady
state (NESS). The injected correlated noise yields the constant
external source of heat needed to maintain the particle in a
NESS. We monitor the non-Brownian diffusion of the trapped
particle and probe large deviations from thermal equilibrium
in strongly correlated regimes unexplored so far with real,
biological active matter [15–17]. The platform we propose
can be used to explore experimentally the fascinating features
of a large variety of systems driven by nontrivial baths that
have been recently described theoretically [18–22]. It can also
be applied to different tracers [23] such as molecular motors
[14,24], or to many-body systems [25,26], in order to study
their response to arbitrary baths.

We further demonstrate that it is possible to drive the parti-
cle from one NESS to another through the sole change of the
correlation time (i.e., the “color”) of the active fluctuations.
For instance, transitions between NESS are known to occur

*giovanni.manfredi@ipcms.unistra.fr
†genet@unistra.fr

when biological matter undergoes a change in mechanical
properties, such as during mitosis, and thereby a modification
of the intracellular noise spectrum [27,28]. Modulating the
color of the noise without changing its amplitude makes it
possible to achieve heat production at constant energy in-
put. We show that this capacity to induce NESS-to-NESS
transitions at zero energetic cost is rooted in the informa-
tional content of active fluctuations. Indeed, correlated noise
carries information that can be quantified by the spectral en-
tropy HS [29], the counterpart of Shannon’s entropy in the
frequency domain, which depends on the noise correlation
time. Remarkably, we find that, for a constant noise amplitude
quantified by an effective equipartition-based temperature Teq,
the heat �Q generated through the transition is proportional
to the entropy of the correlated noise: �Q = kBTeq�HS , in a
fashion that is reminiscent of Landauer’s principle [30,31]. Ef-
fectively, our protocol harvests information from the colored
noise and turns it into heat released to the surrounding fluid
throughout the NESS-to-NESS transition. Our result reveals,
in the broad context of exponentially correlated noises, a deep
connection between information and nonequilibrium thermo-
dynamics, which is central to molecular motors and living
systems capable of extracting energy from their fluctuating
environments to accelerate their average motion [32–34].

II. EXPERIMENTAL REALIZATION

Our experiment consists in optically trapping a single 3 µm
dielectric bead with a 785 nm Gaussian laser beam. The op-
tical potential created by the gradient forces at the waist of
the beam is harmonic for small displacements, with a stiffness
that is proportional to the intensity of the laser. The bead is
immersed in water at ambient temperature and undergoes ran-
dom motion due to the thermal fluctuations consistent with an
Ornstein-Uhlenbeck process. An additional radiation pressure
force is applied to the bead by a second laser, whose inten-
sity is digitally controlled through time by an acousto-optic
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FIG. 1. Schematic view of the experimental realization. The par-
ticle is trapped by the optical potential generated by a focused laser
beam. Its stochastic motion is driven by two random baths: a thermal
(white noise) bath associated with the surrounding fluid at room
temperature T = 296 K (blue) and an active (colored noise) bath
generated by an additional laser exerting on the particle an actively
fluctuating radiation pressure force (red).

modulator. Any waveform can be sent on the bead, including
noise with arbitrary spectrum, up to ≈105 Hz. A schematic
view of the experimental realization is shown in Fig. 1 and
the experimental setup is described in Appendix A.

Active particles are characterized by a persistence that
can be mimicked by an exponentially correlated Gaussian
noise [25,35,36] generated by an Ornstein-Uhlenbeck process
[37,38]

dηt = −ωc ηt dt +
√

2αωc dWt , (1)

where dWt is a δ-correlated Wiener process. Equation (1)
yields a noise ηt with variance α [39] and correlation 〈ηtηs〉 =
αe−|t−s|ωc , where ωc is the inverse of the correlation time
τc. We emphasize the great flexibility of this model, which
enables us to tune independently the amplitude and correlation
of the noise.

The correlated noise ηt is sent to the bead via the radiation
pressure of the secondary laser beam; see Appendix B. Hence,
the overall motion of the bead is subjected to three forces: the
optical trapping force, the white noise thermal bath, and the
colored noise applied by the radiation pressure. The position
xt of the bead obeys the Langevin equation [16,35]

ẋt = −ω0xt +
√

2Dξt +
√

2Daηt , (2)

where ω0 = κ/γ is the inverse of the relaxation time in the
trap, with κ being its stiffness and γ the Stokes viscous drag.
ξt is a white noise that models the fluid thermal bath, with
diffusion coefficient D = kBT/γ , where kB is the Boltzmann
constant and T the fluid temperature. Da is the active diffusiv-
ity associated with the colored noise ηt , which incorporates
the optomechanical coupling between the bead and the noisy
radiation pressure. Equation (2) describes a non-Markovian
process that does not obey the fluctuation-dissipation theorem,
as the correlated fluctuations ηt of the active bath are not com-
pensated by the instantaneous dissipation [17], as discussed in
Appendix E.

III. OUT-OF-EQUILIBRIUM PROPERTIES

One remarkable feature of active matter is that, due to the
correlation properties of the bath, it diffuses in non-Brownian
fashion [10,16,40,41]. The appropriate observable to estimate
the departure from Brownian motion is the mean square
displacement (MSD) 〈δx2(�)〉 = 〈(xt+� − xt )2〉, where � is
a lag time. In the short-time limit, the bead explores the
available space inside the trap according to the free diffusive
motion 〈δx2(�)〉 ∼ �β , with β = 1 for normal and β �= 1 for
anomalous diffusion [42,43].

In Fig. 2(a) we present the MSD for two processes, obeying
Eq. (2) with the radiation pressure injecting in the trap either a
colored noise, or a white noise of equal amplitude. In the latter
case, the bead diffuses normally and the data can be fitted with
the standard Brownian MSD

〈δx2(�)〉 = 2Deq

ω0
(1 − e−ω0�) (3)

with an effective diffusion coefficient given by a single tem-
perature Deq = kBTeq/γ > D defined through equipartition, as
detailed below.

In contrast, the trajectory driven by a colored noise is
superdiffusive and cannot be simply described with a stan-
dard MSD with a single modified prefactor Deq. Instead, the
experimental MSDs are fitted with a modified expression (see
Appendix D) taking into account the noise correlation and
involving two independent diffusion coefficients D and Da.
The first coefficient D is set by the room temperature T , while
Da corresponds to the only fitting parameter.

Of course, all regimes with additional noise are character-
ized by a departure from the thermal equipartition condition
〈x2

t 〉 = D/ω0 = kBT/κ , as a signature of the nonequilibrium
nature of the system [16,36]. When the applied noise is white,
the equipartition theorem can be retrieved with a temperature
defined by the variance Teq = κ〈x2

t 〉/kB. This equipartition
temperature Teq is a function of the the thermal diffusion
coefficient D and the amplitude of the applied noise only. In
contrast, when the applied noise is correlated, the variance
(see Appendix D) is given by

〈x2
t 〉 = D

ω0
+ Daα

ω0(ω0 + ωc)
. (4)

Here the equipartition temperature Teq = κ〈x2
t 〉/kB is a func-

tion not only of the noise amplitude Da but also of its
correlation time ω−1

c and Teq(Da, ωc) �= γ (D + Da)/kB.
In Fig. 2(b) we represent both the variance (left axis) and

the associated equipartition temperature Teq = κ〈x2
t 〉/kB as a

function of the correlation time ω−1
c of the bath, for a constant

noise amplitude. The experimental variances and tempera-
tures are well captured by the analytical result Eq. (4), within
the systematic and statistical errors. We observe indeed that
equipartition takes a more complex character: the temperature
is not uniquely related to the magnitude of the driving noise,
but also depends on a second variable, its correlation time. In
Appendix B we discuss in more detail the relations between
the variance, equipartition temperature and correlation time
for various sets of parameters.
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FIG. 2. (a) Mean square displacement of the position xt mea-
sured experimentally at room temperature T = 296 K and relaxation
time inside the optical trap ω−1

0 = 1.2 ms. The blue line corresponds
to a white noise added to the existing thermal fluctuations inside
the fluid, showing a short-time diffusive limit (∼�0.94); the red
line corresponds to a correlated noise with τc = 1 ms, showing su-
perdiffusivity (∼�1.5); the superimposed dashed lines are fit using
analytical MSD, yielding for the white noise case D eq = 0.34 >

D = 0.17 µm2/s (blue line) and for the colored noise case, Da =
1.441×104 µm2/s (red line). The shaded regions account for the
uncertainties associated with the fitting errors and the systematic
error in the sphere radius. (b) Relation between motional variance
〈x2

t 〉 (left axis) and correlation time of the bath ω−1
c ranging from

0.6 ms to 8 ms with constant bath noise amplitude. The solid line is
the analytical expression of the variance Eq. (4), using the average
value of Da extracted from the fit of the MSDs corresponding to
each value of ω−1

c . For each case, a temperature Teq (right axis)
can be evaluated by multiplying the variance by κ/kB relying on
the equipartition theorem. The graph shows clearly that Teq strongly
depends on the correlation time of the bath, preventing a simple
equiparition relation as explained in the main text. Error bars on the
variance and temperature are accounting for both the systematic error
on parameters (sphere radius, stiffness, temperature, calibration) and
the statistical error on the variance estimation, by a χ2 test with
3σ = 99.7% confidence interval. The shaded area accounts, in the
analytical evaluation of the variance, for the fitting dispersion of Da.

IV. TRANSITION PROTOCOLS BETWEEN TWO NESS

The correlation time of the noise may further be used as
a control parameter in a protocol that brings the system from

FIG. 3. STEP protocol using the noise correlation time as a con-
trol parameter. (a) Several digital realizations of the noise variable
ηt , undergoing a change in the correlation time at t = 0, from τc =
0.8 ms before the STEP to τc = 40 ms after, while ω−1

0 = 2.1 ms.
(b) Corresponding experimental ensemble variance 〈x2

t 〉 of the posi-
tions of the bead; the shaded area represents the 99.7% confidence
interval. (c) Main plot: Cumulative excess heat in units of kBT . Inset:
Cumulative housekeeping heat before the STEP (blue line) and after
the STEP (red dotted line). In the inset, the time origin is set in steady
state for each regime. Sign conventions for the heat terms are used in
agreement with [45].

one NESS to another, without changing either the confining
potential or the temperature. The simplest possible protocol is
a steplike sudden change of the correlation time τc (referred
to as “STEP protocol” hereafter), while keeping the noise am-
plitude constant. We apply the STEP protocol on the system
at a low repetition rate, so that it reaches a steady state in
between each change of τc. The ergodic hypothesis, carefully
verified (see Appendix C), leads us to build an ensemble of
≈1.1 × 104 independent trajectories experiencing the same
protocol. The main quantity of interest here will be the vari-
ance of the response of the bead 〈x2

t 〉 [44].
In Fig. 3 we show the results of a typical STEP protocol.

Figure 3(a) shows some realizations of the noise variable ηt

where the change in τc is visible at t = 0. In Fig. 3(b) we
represent the variance of the position xt of the bead, which
undergoes a threefold increase when the correlation time is
changed. The small dip right after the STEP is due to the fact
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that the non-Markovian trajectory is an integral of the noise
ηt , hence needs a finite time to probe the total amplitude of ηt ,
as discussed in detail in Appendix E.

Even though the increase in variance in Fig. 3(b) looks
similar to the one induced by a rise in temperature, we em-
phasize that this process cannot be modeled through a mere
effective temperature change. Indeed, the increase in variance
is only one of the many outcomes of the color protocol, which
actually modifies all out-of-equilibrium properties, from the
breaking of equipartition to the fluctuation-dissipation rela-
tions. These modifications cannot be understood simply as the
consequence of an effective temperature change.

Furthermore, an important difference with respect to tem-
perature protocols is that, in our case, we do not change the
amplitude of the driving noise, but only act on its spectrum
by modifying the correlation time. In this sense, the protocol
can seem costless from the experimentalist’s point of view, as
no additional power has to be provided to the laser source. As
a comparison, we estimated the equivalent power needed to
induce the same increase in variance as in Fig. 3(b) through a
change in the noise amplitude, i.e., by changing only the dif-
fusivity Da. The result is that one would need a laser intensity
of 70 mW, whereas we used only 36 mW in our color-based
protocol.

From a thermodynamic point of view, our color-based pro-
tocol necessarily produces heat, which is then released in the
thermal bath. Following Sekimoto’s treatment [45,46], which
was recently applied to active matter [12], the cumulative
stochastic heat can be written (see Appendix G)

Q(t ) = QEX + QHK = 1

2

∫ t

0
κ

dx2

dt ′ dt ′

− γ

∫ t

0

√
2Daηt ′ ẋt ′ dt ′. (5)

The first term accounts for the excess heat released during a
transient evolution of the distribution and vanishes for steady
states [47]. It is shown on the main graph of Fig. 3(c) with
an energy release of ≈10kBT . The second term, expressed
in terms of the cross-correlation 〈ηẋ〉, can be evaluated an-
alytically by injecting ẋ as from Eq. (2) and is shown to
grow linearly in time at steady state (see Appendix G). This
is the housekeeping heat, representing the constant expense
needed to maintain the system in its NESS. It is displayed
in the inset of Fig. 3(c) both before and after the protocol,
showing that changing the correlation time affects the heat
dissipation rate. Interestingly, the powers at play in our optical
trap (dQHK/dt ≈ 1 kBT/ms) are close to those involved in bi-
ological processes such as kinesin axonal transport [24,48,49].

V. HARVESTING INFORMATION FROM THE NOISE

The protocol described in the above paragraphs seems to
raise a paradox: after the transition, the heat released during
the process appears to increase (see Fig. 3), while no further
energy was injected in the system since only the spectrum
of the noise was changed and not its amplitude. As the first
principle of thermodynamics is of course not violated, this
means that the coupling between the correlated noise bath and

FIG. 4. Measured excess heat between two NESS (in units of
kBTeq) plotted as a function of the calculated spectral entropy, for
three values of the noise amplitude, each characterized by an equipar-
tition temperature Teq. The dashed line has a slope equal to unity.
Experimental details are given in Appendix H.

the bead has increased, so that energy can be transferred more
efficiently from the former to the latter.

Nevertheless, it is illuminating to analyze this situation
from an informational point of view. Indeed, a correlated
noise carries more information and has lower entropy than
a white, or a less correlated, noise. In the framework of our
experiments, this information content can be measured by the
spectral entropy HS , which is just the Shannon entropy in the
frequency domain [29]:

HS = −
N∑

i=1

P(ωi ) ln P(ωi ), (6)

where P(ωi ) denotes the normalized power spectral density of
the signal η at frequency ωi. The spectral entropy vanishes for
a monochromatic signal and reaches its maximum kB ln N for
white noise. Any correlated noise has an intermediate value
of HS .

We measured HS for various correlation times and noise
amplitudes. Each series is labeled by the equipartition tem-
peratures Teq, measured for a white noise of same amplitude.
For each temperature, we define �HS = HS (τc) − HS (τref ),
and similarly for �QEX , where τref = 0.5 ms is taken as a
reference correlation time. Hence, �HS and �QEX represent
respectively the informational expenditure and the corre-
sponding energetic cost to go from the reference case to the
colored case with correlation time τc through the STEP proto-
col described above.

The data obtained from several measurements are plotted
in Fig. 4 and nicely obey the relation �QEX /kBTeq = �HS .
This strikingly reveals that the excess heat produced in the
process corresponds exactly, in units of kBTeq, to the injected
information. The relationship was tested for exponentially
correlated noises of different amplitudes and over a wide
range of correlation times, and it holds very neatly without any
fitting or adjusting parameters. Although its extension to other
classes of noises is less clear, exponentially correlated noises
constitute by far the most widely used and studied noises
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in stochastic thermodynamics. We stress that this expression
is highly nontrivial: the left-hand side is a thermodynamic
quantity related to the diffusive motion of the trapped bead,
while the right-hand side captures the informational content
of the colored bath generated by the laser beam. This remark-
able result highlights the informational nature of our process,
resolving what could appear as a paradoxically costless
protocol.

VI. CONCLUSION

We studied experimentally the diffusive motion of an opti-
cally trapped particle subjected to both a white thermal noise
due to the surrounding fluid and a correlated noise generated
by a digitally controlled fluctuating radiation pressure. This
configuration constitutes a very accurate, controllable model
of active biological matter. Although it was implemented ex-
perimentally here using a microsphere trapped in a harmonic
potential, and for the class of exponentially correlated noises,
it can be easily extended to other types of tracers, potentials,
and noises.

Three major results were obtained: (1) due to the flexibility
of our setup, we could explore an unprecedented range of
regimes, most notably those characterized by long correlation
times and strong amplitudes, which are unattainable in experi-
ments with real active matter; (2) by using the correlation time
as a control parameter, we devised a protocol that drives the
system from one NESS to another, at zero nominal energetic
cost; and (3) we showed that the excess heat released during
such a protocol is proportional to the spectral entropy of the
exponentially correlated noise, a relationship that is akin to
Landauer’s principle [50,51]. The protocol harvests informa-
tion from the colored noise, turns it into heat necessary for
the transition between the two NESS, and finally releases it
to the surrounding environment. The ubiquity of nonequilib-
rium steady states in biological systems, including changes
in the spectrum of the bath through time (for example, dur-
ing mitosis [27,28]), but also in biochemical sensing systems
[52,53] or within active crowded environments [25] such as
microtubules assemblies [54], suggests exciting applications
for the present findings. In particular, we anticipate that the
relation between heat and spectral entropy could serve as a
new tool for the study of nonequilibrium systems in nontrivial
baths.
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FIG. 5. Simplified view of the optical trapping setup. The sphere
is suspended in water inside the Sample cell inserted between the
two objectives Obj1 and Obj2. The 785 nm trapping beam is drawn
in red, the 800 nm radiation pressure beam in purple. The intensity
of this beam controlled by the acousto-optic modulator (AOM).
The instantaneous position of the trapped bead is probed using the
auxiliary 639 nm laser beam, drawn in orange, whose scattered signal
is sent to a high-frequency photodiode.

APPENDIX A: EXPERIMENTAL SETUP
AND CALIBRATION

Our experimental setup consists in optically trapping, in a
harmonic potential, a single dielectric bead (3 µm polystyrene
sphere) in a fluidic cell filled with dionized water at room
temperature. The harmonic potential is induced by focusing
inside the cell a linearly polarized Gaussian beam (785 nm,
CW 110 mW laser diode, Coherent OBIS) through a high
numerical aperture objective (Nikon Plan Apo VC, 60×,
NA = 1.20 water immersion, Obj1 in Fig. 5). An additional
force in the form of radiation pressure is applied to the sphere
using an additional high-power laser (800 nm, CW 5 W Ti:Sa
laser, Spectra Physics 3900S). The intensity of this radiation
pressure beam is controlled by an acousto-optic modulator
(Gooch and Housego 3200s, AOM in Fig. 5) using a digital-
to-analogue card (NI PXIe 6361) and a PYTHON code.

The instantaneous position xt of the sphere along the op-
tical axis is measured by recording the light scattered off the
sphere of a low-power 639 nm laser (CW 30 mW laser diode,
Thorlabs HL6323MG), sent on the bead via a second objective
(Nikon Plan Fluor Extra Large Working Distance, 60×, NA =
0.7, Obj2 in Fig. 5). The scattered light is collected by Obj1
and recorded by a photodiode (100 MHz, Thorlabs Det10A).
The recorded signal (in V/s) is amplified using a low noise
amplifier (SR560, Stanford Research) and then acquired by
an analog-to-digital card (NI PCI-6251). The signal is filtered
through a 0.3 Hz high-pass filter at 6 dB/oct to remove the DC
component and through a 100 kHz low-pass filter at 6 dB/oct
to prevent from aliasing. The scattered intensity varies linearly
with the position of the trapped bead xt for small enough dis-
placements, and we make sure to work in the linear response
regime of the photodiode so that the recorded signal is linear
with the intensity, resulting in a voltage trace well linear with
x(t ).

The calibration of the recorded voltage is done by fitting
the motional Lorentzian spectrum of the sphere (see Fig. 6)
from which is extracted a calibration coefficient expressed in
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FIG. 6. Power spectral density Sx[ω] of the bead position,
recorded with no additional noise, i.e., solely driven by thermal fluc-
tuations (blue circles) and with additional white noise injected inside
the trap (red circles) using the auxiliary radiation pressure laser made
noisy via the AOM. In both cases, the dashed lines correspond to
Lorentzian fits, with shaded regions indicating the limits of the fits.
The vertical line marks the position of the trap roll-off frequency
at ∼102 Hz. Note the onset of the electronic noise floor at high
frequencies.

m/V, generally ∼10−7 m/V. The noise added by the radiation
pressure laser modifies the dynamics of the bead, but without
changing the properties of the trapping potential. As presented
in Fig. 6, we carefully verify that an added white noise that
mimics a higher temperature only leads to an increase in the
power spectral density amplitude (as expected when increas-
ing the kinetic temperature of the bead) without modifying

neither its Lorentzian profile nor the roll-off frequency of the
trap, left unchanged at ≈150 Hz.

APPENDIX B: EXTERNAL RADIATION PRESSURE
FORCE ACTING AS A BATH: FROM NOISE

GENERATION TO ACTIVE PROTOCOLS

We generate the external noise following the sequence
described in Fig. 7. Using a PYTHON code with a build-in
random noise generator, we can easily generate a white noise.
In the case of white noise, each random number is indepen-
dent, hence due to the law of large number (more precisely
to the central limit theorem), it will yield a Gaussian density
for the positions xt . The choice of a white noise probability
density is therefore not important. To maximize the available
dynamical range, we thus simply use a uniformly distributed
noise. This free choice for the noise probability density will no
longer be possible for correlated noise. We will use a Gaussian
probability density in that case.

In contrast, for a colored noise, both correlation and distri-
bution matter. In this case, we use a Gaussian exponentially
correlated noise, given as the solution of the Ornstein-
Uhlenbeck process

dηt = −ωcηt dt +
√

2αωcdWt , (B1)

where ωc is the inverse characteristic time of the noise and
√

α

its amplitude. The variance of such a process is 〈η2
t 〉 = α. This

correlated noise will then enter into the Langevin equation as
an external random force field

γ ẋt = −κxt + γ
√

2Dξt + Fext (t ) (B2)

with D = kBT/γ the diffusion coefficient in the thermal bath.

FIG. 7. Schematic representation of the signal and data acquisition processing implemented in our experiments. The noise ηt is digitally
generated, scaled to a voltage V (t ) that can be sent to the acouto-optic modulator (AOM), producing a diffracted beam whose intensity varies
linearly with this input voltage. The laser beam diffracted through the AOM exerts a radiation pressure on the optically trapped sphere, whose
position is recorded as detailed in Appendix A. A small part of the laser beam is also measured and used to monitor and evaluate the noise ηt

as it enters the trap.
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FIG. 8. Schematics of the action of the radiation pressure force
centered around a mean value F0, which induces a small displace-
ment of the mean position 〈xt 〉 of the trapped microsphere. This
mean shift can be filtered away when recording the instantaneous
position of the sphere, so that the remaining force corresponds to the
fluctuating part δF (t ) only. Combined with the restoring force −κxt ,
it can give both negative (pulling) and positive (pushing) values.

The external radiation pressure force Fext = F0 + δF (t ) is
centered around a mean value 〈Fext〉 = F0 and with a zero
mean noise part 〈δF (t )〉 = 0. The effect of the radiation pres-
sure external force is schematized in Fig. 8, where the mean
displacement of the microsphere in the trap induced by the
mean radiation pressure value is shown, together with the
superimposed action of the fluctuating bath around this mean
value. The average term F0 vanishes trivially when looking at
the centered process xt − 〈xt 〉 = xt − F0/κ , which is always
the case in our experiments. Random, the external force acts as
a secondary bath. It can thus be recast as Fext (t ) = γ

√
2Daηt ,

i.e. on the same footing as the thermal force Fth(t ) = γ
√

2Dξt

where D is in m2/s and ξ (the time derivative of a Wiener pro-
cess) is in

√
Hz. This leads us to introduce an active diffusion

coefficient Da having the same dimension as D, associated
with the noise ηt solution of Eq. (B1). This gives the noise
of dimension [ηt ] ≡ [

√
α] ≡ √

Hz, just like the thermal noise
term ξt .

An important asset of our work is the flexibility of our
scheme for controlling the color and the amplitude of the
noise, which demands that one keep ωc and α independent.
To do so, we first generate numerically with the PYTHON

code, under a sampling frequency of 20 kHz, the noise ηt

of variance α, scaled to the desired amplitude ∈ [0, 1] which
corresponds, in volts, to the range fixed by the radio-frequency
generator driving the acousto-optic modulator (AOM). The
AOM response is calibrated to yield a linear relation between
the input voltage and output laser intensity in the first order
diffracted beam. The numerically generated noise is thereby
encoded into a radiation-pressure laser intensity noise sent to
the bead. This noise intensity acting on the bead depends both
on the gain of the AOM-diffracted beam and on the choice of
the radiation-pressure laser intensity.

In our experiments, the amplitude of the noise is indepen-
dent of its color, which is different from the choice made

in [16], where α scales as the square root of the inverse
correlation time of the noise. This choice necessarily induces
the interplay between both correlation times and amplitudes
that we want to avoid. The actual amplitude of the noise
experienced by the bead, which depends not only on the
radiation-pressure laser intensity but also on the optomechan-
ical coupling between this laser beam and the trapped sphere,
will be taken into account in Fext via the active diffusion co-
efficient Da. This implies that choosing α = 1 is the simplest
option. However, we keep the α term for clarity, as a purely
dimensional constant.

In Fig. 9(a) we show the power spectral densities of dif-
ferent noises, from white to colored. At high frequencies
(>3000 Hz; see Fig. 6), the signal is dominated by the elec-
tronic noise of the experiment, limiting the spectral bandwidth
of interest from a fraction of Hz to a few kHz. The blue
curve in Fig. 9 corresponds to a white noise generated over
the desired bandwidth where we see its flat spectrum covering
all the response region of the bead, up to the 20 kHz limit
of the generation sampling frequency. The other curves are
the different colored noises, with correlation times spanning
from 0.1 to 50 ms. In Fig. 9(b) we show the mean squared
displacement (MSD) associated with each noise. The black
curve shows the DC case with Fext = F0 where no noise is
added. The blue curve corresponds to the white noise drive
[blue spectrum of Fig. 9(a)], slightly above the thermal MSD
as a consequence of the increase in effective temperature. The
orange curve gives the first colored noise case [orange spec-
trum of Fig. 9(a)]. We can note that the responses to a white
noise and to a colored noise of correlation time 0.1 ms are
similar, this colored noise being “almost white.” This implies
that longer (>0.1 ms) correlation times are needed to make a
clear difference between white and colored cases (as seen for
the next colored noise with correlation time 0.5 ms). The other
curves are the MSD corresponding to the different noises of
Fig. 9(a).

The white noise is not generated here as a ωc → ∞ limit.
Our choice for the correlation function 〈ηtηs〉 = αe−ωc|t−s|
with independent α and ωc yields, as a consequence, that
when ωc → ∞, the amplitude vanishes over a finite band-
width, since the total integral α is conserved. It is clear for
the different observables we measure, such as PSD, MSD,
or heat, that the limit ωc → ∞ yields a vanishing additional
noise, leading to normal diffusion at room temperature. As
explained above, the white noise with a finite amplitude over
a finite bandwidth is generated with an independent method.
Yet, as is also seen in Fig. 9, a colored noise with a finite ωc

can itself yield an identical response as that of a white noise.
As mentioned in the main text, when the noise applied is

white, the MSD takes the simple form of a thermal Brown-
ian motion MSD, but with a modified prefactor 2Deq/ω0 =
2kBTeq/κ , where Teq corresponds to the temperature obtained
through equipartition Teq = κ〈x2〉/kB. When the noise is
correlated, the MSD is characterized by two independent co-
efficients D and Da which cannot be combined as a single
prefactor. The temperature obtained by equipartition Teq =
κ〈x2〉/kB depends on the correlation time of the noise and
is not sufficient to characterize the MSD. In the following,
we focus on the relation between the amplitude of the noise
applied to the microsphere, the correlation time of the bath
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FIG. 9. (a) Power spectral densities associated with different noises ηt (for each colored curves, the corresponding correlation time is
indicated within brackets in the legend). Each spectrum is measured directly from the laser intensity signal that is sent on the trapped bead as a
radiation pressure. (b) Mean squared displacement of the sphere for each of the noises presented in panel (a). The DC case corresponds to the
absence of additional noise, with Fext = F0. We observe that the white noise case and the first colored noise case (correlation time 0.1 ms) are
almost identical. Superimposing the fit performed with the analytical expression for the mean squared displacement (see below, Appendix D)
enables one to extract the active diffusion coefficients Da for each case.

and the resulting Da, Teq and motional variance. We emphasize
that Teq has a clear and simple meaning when the driving noise
is white, and will therefore be used as a way to characterize
the amplitude of the driving noises. It will also often be used to
normalize quantities of interest by a well controlled measure
of the bath amplitude.

Figure 10 (left panel) displays the constant active diffusion
coefficient Da as a function of the scanned correlation times
ω−1

c . Each color, from deep blue to light blue corresponds to a
different noise amplitude, characterized by the equipartition
temperature Teq determined for a white noise of the same
amplitude (shown in the legend, ranging from 413.52 K to
1679.4 K). The white noise equipartition temperatures Teq are
used to normalize the active diffusion coefficient Da by Deq =
kBTeq/γ . Keeping the same amplitude 〈η2〉, we can scan the
range of colored noise, by varying ωc. For each noise ampli-
tude, we can compute the motional variance 〈x2〉 as a function
of the correlation time ω−1

c and the related equipartition
temperature Teq = κ〈x2〉/kB. We represent the motional vari-
ance and equipartition temperature in Fig. 10 (right panel).

Both quantities strongly depend on the correlation time and
are well captured by the analytical expression (4). The
equipartition temperatures, reaching values above 104 K, are
always higher than the ones obtained with a white noise of
same amplitude, which are displayed as dashed horizontal
lines.

For the analysis of the relation between heat and infor-
mation, the excess heat is normalized by kBTeq where Teq is
evaluated with a white noise, providing a robust characteriza-
tion of the bath energy.

To study protocols, we need an ensemble of independent
trajectories all experiencing the same parameter changes. In
our experiments, this is a change in correlation time ωc(t ) that
we modulate in a steplike way from an initial ωi

c to a final ω
f
c

values. With one single bead in the optical trap, the ensemble
is drawn out of a long time series, for which the ergodic
hypothesis is crucial and was carefully checked as discussed
in Appendix C. We produce one long noise sequence ηt where
a large number of correlation time changes are produced
following a ωi

c/ω
f
c square modulation at a low enough rep-

FIG. 10. (a): Active diffusion coefficient Da normalized to the white noise equipartition diffusion coefficient Deq = kBTeq/γ as a function
of the correlation time ω−1

c . This is plotted for various noise amplitudes, characterized by an equipartition temperature Teq computed for a
white noise of same amplitude (in the legend, from 413.52 to 1679.4 K). (b): Motional variances 〈x2〉 (left axis) and related equipartition
temperatures Teq = κ〈x2〉/kB (right axis) as a function of the correlation time ω−1

c and for various noise amplitudes, characterized by the same
white noise equipartition temperatures, also shown on the graph as constant dashed lines. Circles are experimental variances and solid lines
represent the analytical result (4). Color coding is the same as in the left panel.
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FIG. 11. (a) Temporal noise series ηt modulated between two correlation times (two colors) following a 20 Hz square modulation function
(top) and the resulting trajectory xt (bottom). (b) Since the time between switches is long, the long trajectory is cut and reshaped as an ensemble
of independent synchronous trajectories. In the upper panel, the {ηi

t } ensemble clearly displays at t = 0 the instantaneous change in correlation
with constant amplitude. In the lower panel, the ensemble of trajectories {xi

t } of the bead show the progressive change in the motional variance
that results from the steplike change of correlation times of the bath.

etition rate (a few tens of hertz). This modulation sequence
is sent to the bead via the radiation pressure laser. The cor-
responding trajectory xt of the bead relaxes to one steady
state between each change on ωc. This long trajectory is cut
and reshaped into an ensemble of trajectories {xi

t } that, each,
experience a steplike change in correlation time. In order to
build the actual noise protocol driving these trajectories, we
generate in parallel two independent sequences of ηt time
series with different (but constant) correlation times that are
then interspersed synchronously with the ωi

c/ω
f
c square mod-

ulation impacting the motional trajectory xt . The detailed
procedure is described in Fig. 11.

APPENDIX C: ERGODICITY

For a stationary process, ergodicity is the equality of time
and ensemble averages in the limit of infinite time T and
infinite ensemble. But as detailed in our previous work [44],
appropriate tools exist that can asses the ergodic nature of
trajectories {xt } on finite samples and finite times. To do so,
we rely on an estimator [42] corresponding to the variance of
the ratio between time-averaged mean squared displacement
(MSD) and time-ensemble-averaged MSD. This ratio should
become Dirac-like for long-time (or short time lag � in the
MSD). The 0 limit of the variance of this ration for �/T → 0
is a necessary and sufficient condition for ergodicity [44].

The result, plotted in Fig. 12(a) with fixed T and varying
�, decays to zero for short time lag as expected. With fixed �,
varying T , the expected decrease towards 0 for long time, with
a linear trend in log scale, is also clearly seen in Fig. 12(b).
These two results validate our ergodic assumption for the
time series of position xt , and therefore our treatment when
it comes to building trajectory ensembles.

APPENDIX D: POWER SPECTRAL DENSITY,
AUTOCORRELATION, MEAN SQUARED DISPLACEMENT,

AND EQUIPARTITION BREAKING

Our system, consisting of an optically trapped bead ther-
mally diffusing within active fluctuations, is described by

a couple of stochastic differential equations that determine
the evolution of the position of the bead within the trap
according to

ẋt = −ω0xt +
√

2Dξt +
√

2Daηt , (D1)

where the active noise ηt solution of the Ornstein-Uhlenbeck
process

dηt = −ωcηt dt +
√

2αωcdWt (D2)

is an exponentially correlated Gaussian variable.
We can derive the noise power spectrum density by Fourier

transforming Eq. (D2)

−iωη[ω] = −ωcη[ω] + √
αωcξ [ω], (D3)

where ωc is the correlation pulsation. Taking the squared norm
leads to the active noise power spectral density (PSD)

η[ω]η∗[ω] = |η[ω]|2 = αωc

ω2
c + ω2

. (D4)

In Fig. 13(a) we plot the PSD directly measured from the laser
output signal used to induce the noisy radiation pressure, both
in the case of a white noise and colored noise. As expected,
the spectrum of the white noise is flat on all the studied band-
width, whereas the spectrum of the colored noise is following
a Lorentzian profile, well captured by a fit following Eq. (D4).

The PSD of the motion xt is evaluated from Eq. (D1) as

x[ω]x∗[ω] = 1

ω2
0 + ω2

(2Dξ [ω]ξ ∗[ω] + 2Daη[ω]η∗[ω]),

(D5)
noting that the implicit averaging performed in this square
cancels the two cross-product of the uncorrelated noises
η[ω]ξ ∗[ω] and the complex conjugate. In Eq. (D5), ω0 = κ/γ

is the inverse of the characteristic relaxation time of the sys-
tem, and η[ω]η∗[ω] is given by Eq. (D4) and ξ [ω]ξ ∗[ω] = 1.
Hence

x[ω]x∗[ω] = |x[ω]|2 = 1

ω2
0 + ω2

(
2D + 2Daαωc

ω2
c + ω2

)
. (D6)
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FIG. 12. (a) The ergodic parameter (i.e., the normalized variance ε(�) presented in our previous work [44]) is shown as a function of the
time lag � for both the white-noise-driven process (blue circles) and the colored-noise-driven process (red triangles) along with the analytical
prediction for the white noise case (black dashed line). The red and blue hazes measure the 2σ = 95% confidence interval. (b) The same ergodic
parameter ε(�) plotted as a function of the total time τ for both the white-noise-driven process (blue circles) and the colored-noise-driven
process (red triangles) along with the analytical prediction for the white noise case (black dashed line).

In Fig. 13(b) we plot the measured spectra of xt both for a
white and colored external drive, with the analytical result
of Eq. (D6) using the value of Da obtained from the fit of
the MSD for the colored noise (see Fig. 9) and using the
Da → 0 limit for the white noise case. A very good agreement
between the theory and the experimental data is clearly seen,
confirming that our model captures well the real diffusive
dynamics of the trapped bead.

We can also compute the correlation function of the
colored-noise-driven process from the Wiener-Khintchine
theorem as

Cxx(�) = 1

2π

∫ +∞

−∞
|x[ω]|2e−iω� dω

= 1

2π

∫ +∞

−∞

2De−iω� dω

ω2
0 + ω2

+ 1

2π

∫ +∞

−∞

2Daαωce−iω� dω(
ω2

0 + ω2
)(

ω2
c + ω2

) , (D7)

where both integrals can be computed via contour integration.
For the first one, f [ω] = D

π
e−iω�

ω2
0+ω2 has one simple pole in the

upper-half complex plane in iω0, leading to compute one
residue

∫ +∞

−∞
f [ω] dω = 2iπRes{ f [ω], iω0}

= lim
ω→ω0

2De−iω�

ω + iω0
= D

ω0
e−ω0�. (D8)

Similarly, the second integral with g[ω] = Daαωce−iω�

π (ω2
0+ω2 )(ω2

c +ω2 )
is

evaluated by separating it through partial fraction decompo-
sition in g[ω] = Daαωce−iω�

π (ω2
c −ω2

0 )
( 1
ω2

0+ω2 − 1
ω2

c +ω2 ) ≡ g1[ω] + g2[ω]
leading to two integrals with simple poles in iω0 and iωc:

∫ +∞

−∞
g[ω] dω = 2iπRes{g1[ω], iω0} + 2iπRes{g1[ω], iωc}

= Daαω2
c

(
e−ω0�

ω0
(
ω2

c − ω2
0

) − e−ωc�

ωc
(
ω2

c − ω2
0

)
)

= Daαωc

ω0
(
ω2

c − ω2
0

)
(

e−ω0� − ω0

ωc
e−ωc�

)
. (D9)

FIG. 13. (a) Power spectral densities (PSD) of the white noise (blue curve) and colored noise (red curve) measured on a 10% fraction
of the laser beam signal that is sent inside the trap to act on the bead as a noisy radiation pressure. A Lorentzian fit (black dashed curve) is
superimposed on the colored noise spectrum. (b) Motional PSD Sx[ω] = 2|x[ω]|2 plotted as a function of the frequency for the white-noise-
driven process (blue) and the colored-noise-driven process (red) along with the associated theoretical PSD (black dashed curves).
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FIG. 14. Correlation function Cxx (�) = 〈x(t + �)x(t )〉 plotted
as a function of the lag � for the white (blue curve) and colored
(red curve) noise-driven processes, both normalized to the zero delay
� = 0 correlation function Cxx (0). The theoretical expressions de-
rived in Appendix D are displayed as dashed black curves for both
cases.

These evaluations are combined to provide the expression for
the correlation function of the diffusion process:

Cxx(�) = D

ω0
e−ω0� + Daαωc

ω0
(
ω2

c − ω2
0

)
(

e−ω0� − ω0

ωc
e−ωc�

)
.

(D10)
In Fig. 14 we represent the normalized correlation function

Cxx for both white and colored noise drives where we super-
impose the analytical result, using the value of Da obtained, as
indicated above, from the fit of the MSD for the colored noise.
Here too we use the Da → 0 limit for the white noise. Again,
the good agreement between the exponential decays and the
analytical models is observed.

The MSD of a colloid diffusing in a thermal environment
obeys an Ornstein-Uhlenbeck process and is thus character-
ized by the white noise MSD:

〈δx2(�)〉 ≡ 〈[x(t + �) − x(t )]2〉 = 2D

ω0
(1 − e−ω0�), (D11)

where D is the diffusion coefficient in the thermal bath,
expressed in m2/s, and ω0 = κ/γ is the inverse of the charac-
teristic relaxation time of the bead in the trap.

In contrast, the MSD of an active particle obeys Eq. (D1)
and can be computed as 〈δx2(�)〉 = 2〈x2

t 〉 − 2Cxx(�) where
the variance is the stationary variance of the process and 〈x2

t 〉
is taken as the limit lim

t→∞[〈x2
t 〉] = D

ω0
+ Daα

ω0(ωc+ω0 ) . This leads us

to calculate directly

〈δx2(�)〉 = 2D

ω0
+ 2Daα

ω0(ωc + ω0)
− 2D

ω0
e−ω0�

− 2Daαωc

ω0
(
ω2

c − ω2
0

)
(

e−ω0� − ω0

ωc
e−ωc�

)

= 2D

ω0
(1 − e−ω0�) + 2Daαωc

ω0
(
ω2

c − ω2
0

)

×
(

1 − e−ω0� − ω0

ωc
(1 − e−ωc�)

)
, (D12)

which constitutes the result used in the main text. The long-
time limit can be easily derived as

lim
�→∞

[〈δx2(�)〉] = 2D

ω0
+ 2Daα

ω0(ωc + ω0)
. (D13)

To asses the break of the equipartition relation, it is enough
to show the absence of linearity between the variance and
the effective diffusion coefficient associated with the active
process. For different noise colors, we thus measure and fit
the MSD to extract each corresponding Da. We then plot in
Fig. 2(b) the variance against the correlation time ω−1

c . As
seen in the figure, we clearly observe that the variance does
not follow the intuitive ω−1

0 linearity. In striking contrast, it
rather follows one half of Eq. (D13)–i.e., D

ω0
+ Daα

ω0(ωc+ω0 ) –
where the explicit ωc term prevents us from defining a unique
effective diffusion coefficient (or effective temperature) and
where Da comes from the fit of the MSD displayed in Fig. 9.

APPENDIX E: MICRORHEOLOGY AND FLUCTUATION
DISSIPATION THEOREM

We probe the nonequilibrium nature of the active fluctu-
ations and the validity of the fluctuation dissipation theorem
(FDT) by comparing the dynamical responses of our system to
active microrheological (AMR) and passive microrheological
(PMR) excitations, respectively [55,56].

At thermal equilibrium, under detailed balance conditions,
the linear response of the system to a small perturbation is
connected to equilibrium correlations of fluctuations through
the FDT according to which

∂Cxx(t )

∂t
= 2kBT R(t ), (E1)

where Cxx(t ) = 〈x(t )x(0)〉 is the motional autocorrelation
function and R(t ) is the response function of the system. This
equation can be more conveniently derived in the frequency
domain. If we consider the motion of the bead driven by a
noise of unit variance φt (that takes in our case the form
ξt + √

Da/Dηt ), the Fourier transform of the corresponding
Langevin equation writes as

−iωγ x[ω] = −κx[ω] +
√

2kBT γφ[ω], (E2)

where κ is the stiffness of the potential, γ the Stokes fric-
tion drag, and

√
2kBT γφ[ω] is a generic random force. The

equation can be written in terms of a mechanical susceptibility
χ [ω] as

x[ω] = χ [ω]
√

2kBT γφ[ω], (E3)

where χ [ω] can be decomposed into real and imaginary parts
as

χ [ω] = ω0

γ
(
ω2

0 + ω2
) + i

ω

γ
(
ω2

0 + ω2
) ≡ χ ′[ω] + iχ ′′[ω].

(E4)
If we compare the imaginary part χ ′′[ω] with the power
spectral density obtained, in the case of a thermal, white
noise drive, by the square modulus of position Fourier trans-
form |x[ω]|2 = 2D/(ω2

0 + ω2), we obtain the expression of
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FIG. 15. (a) Active microrheological (AMR) experiment where the sinusoidal forcing of the system is monitored in the time domain. The
recorded trajectories of the bead inside the trap are superimposed to the sinusoidal traces of the force for two different modulation frequencies.
(b) Power spectral densities displayed together for different modulation frequencies of the external force drive. The Fourier components of
each harmonic forcing are clearly seen as peaks in the PSD.

the FDT in the Fourier space:

χ ′′[ω] = ω|x[ω]|2
2kBT

, (E5)

where the spectrum |x[ω]|2 is the Fourier transform of auto-
correlation function Cxx(t ) (Wiener-Khinchine theorem).

If now one adds a small sinusoidal perturbation on the
bead by means of an external force (which corresponds to
radiation pressure in our experiments), the FDT can be tested
experimentally by measuring the response function. Under the
sinusoidal ac drive of the AMR mode at pulsation ωac, the
PSD takes the following form [57]:

|x[ω]|2ac = 1

ω2
0 + ω2

(
2D + F 2

ac

2γ 2
δ(ω − ωac)

)
, (E6)

where Fac is the Fourier force component of the drive, while
the unperturbed PSD of the PMR mode writes

|x[ω]|2 = 2D

ω2
0 + ω2

. (E7)

By computing the ratio |x[ωac]|2/|x[ωac]|2ac at the pulsation
ωac for a bead on which a “white noise” radiation pressure is
exerted (hence maintaining it close to thermal equilibrium but
at an effective temperature Teq higher than room temperature),
we can extract the value of Fac by taking the mean value of
all realizations. This value can then be used to calibrate the
response function χ ′′[ω] and compare it with the steady-state
fluctuation PSD 2|x[ω]|2.

In Fig. 15(a) we show the external drive in the time domain
and the motional response of the bead inside the trap for two
different modulation frequencies. By repeating the procedure
for frequencies ranging from 10 Hz to 6 kHz, the response of
the bead is characterized over all the useful bandwidth [see
Fig. 15(b)]. In Fig. 16 the values of ω|x[ω]|2/2kBT and χ ′′[ω]
are plotted together for the probed frequencies, for both the
white-noise- and colored-noise-driven processes. We clearly
observe that in both cases, the response functions associated
with the mechanical susceptibilities fall back on the same
trend. This trend is exactly the one associated with the white-
noise-driven PSD as expected from Eq. (E5). In contrast, the

spectral density of the colored-noise-driven process signifi-
cantly departs from the FDT in Eq. (E5), and more particularly
for the low frequencies of the active fluctuation spectrum.
This is in agreement with other observations made recently
in active systems [55], where the active mechanical processes
mostly appear at low frequency, while the FDT is recovered
for the thermally dominated high-frequency part.

We note here that a simple observation of the breaking
of the FDT can already be seen in our model described by
Eq. (D1), where the fluctuating forces associated with the
added noises ξt and ηt now possess an intrinsic correlation
time due to the correlated nature of ηt , while the friction kernel
γ is taken as instantaneous �(t, t ′) = γ δ(t, t ′). This choice
has been shown to be valid in the experimental case [17],
where the fluctuations of the active bath are not compensated
by a dissipation with the same rate. In the limit of vanishing
correlation times, the FDT is recovered as the noise is white

FIG. 16. We compare the measured values of χ ′′[ω] for white
(open circles) and correlated (open squares) noise for different mod-
ulation frequencies ωac and small sinusoidal perturbations with the
stationary correlation spectra plotted as ω|x[ω]|2/2kBT for white
(blue curve) and correlated (orange curve) noises. One immedi-
ately remarks the breaking of the FDT for the colored-noise-driven
process.
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(δ-correlated) and its only effect is an effective change in
temperature, as was already observed using a different exper-
imental technique [58,59].

APPENDIX F: VARIANCE UNDER STEPLIKE
CHANGE OF COLOR

We carefully analyze here the color protocol associated
with a sudden change (STEP) in the correlation time of the
bath. We model this STEP protocol by applying two different
noises η1 and η2 with respective inverse correlation times ω1

and ω2 and modulated with two Heaviside functions. We con-
sider that at time t = 0− the system is at thermal equilibrium
with no additional noise; at time t = 0+, a first colored noise
η1 is turned on; at time t = t0, η1 is turned off and the second
noise η2 is turned on. The differential equation for the centered
process xt writes as

ẋt = −ω0x + θ (t0 − t )
√

2D1η1(t ) + θ (t − t0)
√

2D2η2(t )

+
√

2Dξ (t ), (F1)

where θ (t0 − t ) is a Heaviside function centered at t0 and ξ

is the thermal white noise. Laplace transforms lead to com-
pute the solution for the position xt of the microsphere that
experiences a steplike change of correlation time

xt = x0e−ω0t + e−ω0t

[√
2D2

∫ t

t0

eω0τ η2(τ ) dτ

+
√

2D1

∫ min(t0,t )

0
eω0τ η1(τ ) dτ +

√
2D

∫ t

0
eω0τ ξ (τ ) dτ

]
.

(F2)

The first noise η1 stops at t0 so that the integral stops either at t
if t < t0 or at t0 otherwise. The second noise η2 starts at t0 and
so does its integral. The thermal noise is always present, hence
its integral extends from 0 to t . Note that even if the integral
of the first noise stops at t0, we will see on the variance that it
still has an influence on longer times.

We can compute the motional variance as the ensemble
average of the square of Eq. (F2). By a parametrization of time
with � corresponding to the lag after the STEP, we arrive for
the time evolution of the variance after the protocol at

σ 2
x (�) = D

ω0
+ D1α

ω0(ω0 + ω1)
e−2ω0�

+ 2D2α

ω2
0 − ω2

2

[
1 − 2e−�(ω0+ω2 ) + e−2ω0�

− ω2

ω0
(1 − 2e−2ω0�)

]
, (F3)

while we recall the stationary variance before the STEP when
t0 is very large:

σ 2
x = D

ω0
+ D1α

ω0(ω0 + ω1)
. (F4)

We can note in Eq. (F3) that the influence of the first noise
η1 decreases exponentially with the characteristic time 1/ω0

while the second noise emerges with a nonmonotonic biexpo-
nential relaxation. In Fig. 17 we show the theoretical variance
as the combination of Eqs. (F4) and (F3) with the result of

FIG. 17. Analytical solution for the variance associated with
a steplike change of color (from ω−1

1 = 2 ms and ω−1
2 = 40 ms,

with ω−1
0 = 2.1 ms, here D1 = D2 = 2×10−9 m2/s) along with a

numerical simulation performed with a first-order Euler-Maruyama
discretization scheme.

a numerical simulation with the same parameters. We see
that the model captures well the dynamics at play, includ-
ing the decrease of variance after the protocol, due to the
short-time underestimation of the correlation (mathematically,
to the combination of the exponential terms in the variance
solution).

APPENDIX G: THERMODYNAMICS

The application of stochastic thermodynamics to active
matter has already been studied theoretically [9,12,13,56,60]
and experimentally in some cases [15]. In this Appendix we
describe in detail how the stochastic heat can be efficiently
used to describe and characterize the processes at play in our
experiments. We first note that, in our experiments, our system
is brought to a nonequilibrium steady state (NESS) where
the stationary stochastic laser drive maintains—through the
action of radiation pressure—the system out of its equilibrium
state at a given temperature and stiffness κ . Following the
standard methods of stochastic energetics [45,46], we write,
from Eq. (D1), for our process

(γ ẋt − γ
√

2Dξt dt )dx = −(κxt + γ
√

2Daηt )dx. (G1)

The left-hand side is interpreted as the heat exchanged with
the thermal bath δq = −(γ ẋ − √

2Dξt dt )dx. Since the active
force is stochastic, it produces no work. In fact, including a
random force in the expression of work induces a violation of
the Crooks relation [61]. The internal energy stays related to
the potential energy dU = −κx2

t dx and the remaining term
γ
√

2Daηt dx is the energy exchanged with the active bath.
Interpreted as a heat term [12], it can be evaluated from the
right-hand side of Eq. (G1) as

δq(t ) = 1

2
κ

dx2

dt
dt − γ

√
2Daηt ẋt dt, (G2)
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FIG. 18. (a) Measured heat necessary to keep the system in a NESS (in units of kBT ) both for τc = 0.8 ms (blue line, before the STEP)
and for τc = 40 ms (red dotted line, after the STEP). (b) Released heat measured through the transient both for a increasing correlation time
(blue circles) and equivalently for a decreasing correlation time (red triangles).

which can be integrated to give the stochastic heat evaluation

q(t ) = 1

2

∫ t

0
κ

dx2
s

ds
ds − γ

∫ t

0

√
2Daηsẋs ds. (G3)

Finally, we compute the ensemble average heat, which will
be expressed in terms of variance and cross-correlations

Q(t ) ≡ 〈q(t )〉 = 1

2

∫ t

0
κ

d
〈
x2

s

〉
ds

ds − γ

∫ t

0

√
2Da〈ηsẋs〉 ds.

(G4)
The first term is connected to the evolution of the variance.
It vanishes in the steady state and only accounts for the heat
released during a transient evolution of the distribution. The
second term can be computed analytically by injecting the dif-
ferential equation (D1) for ẋt : 〈ẋtηt 〉 = −ω0〈xtηt 〉 + √

2Daα.
The first term can be computed

〈xtηt 〉 =
∫ t

0

√
2Da〈ηtηs〉e−ω0(t−s) ds

= α

∫ t

0

√
2Dae−ωc|t−s|−ω0(t−s) ds

=
√

2Daα

ω0 + ωc
(1 − e−t (ω0+ωc ) ), (G5)

and the second term

−γ

∫ t

0

√
2Da〈ẋsηs〉 ds

= −γ

∫ t

0

√
2Da(−ω0〈xsηs〉 +

√
2Daα)ds

= 2γ Daα

(∫ t

0

ω0

ω0 + ωc
[1 − e−s(ω0+ωc )]ds − t

)

= 2γ Daα
( ω0

ω0 + ωc
− 1

)
t + 2γ Daω0

(ω0 + ωc)2
(1 − e−t (ω0+ωc ) )

(G6)

to give, after an exponential decorrelation at short times (just
after the noise is turned on, a short-time regime that is never
probed in our experiments), a linear heat expenditure with
negative (since ω0 > 0) slope 2γ Daα( ω0

ω0+ωc
− 1) that account

for the heat needed to maintain the system in its NESS.

We note again that, in the white noise limit on an infinite
bandwidth, ωc → ∞, if we keep in mind that Da ∼ ω−1

c ,
housekeeping heat vanishes. Keeping finite ωc we have the
expected trend of a housekeeping that increases with correla-
tion time.

Therefore, if we discard the decorrelation after the noise is
turned on, we obtain the following expression for the cumula-
tive heat:

Q(t ) = 1

2

∫ t

0
κ

d
〈
x2

s

〉
ds

ds + 2γ Daα

(
ω0

ω0 + ωc
− 1

)
t

≡ QEX (t ) + QHK (t ), (G7)

where the two quantities are reminiscent of the excess (EX)
and housekeeping (HK) heat terms [47].

In Fig. 18 we display the time evolution of these two
quantities for the τc(t ) STEP protocol described above.
Figure 18(a) shows the heat necessary to maintain the NESS
both before and after the change of τc. As we see, changing
the correlation time changes the rate of heat dissipation. In
Fig. 18(b) the time evolution of the excess heat discarded
through the transient is plotted for both increasing or decreas-
ing STEP of τc. It is remarkable to stress that the quantity of
heat ≈10kBT exchanged is the same for both cases.

Note that an alternative expression for the heat can be
found in the context of active matter and active Ornstein-
Uhlenbeck processes. These different approaches lead all to
similar results, since Sekimoto’s definition of heat as

δq = −(γ ẋ − γ
√

2Dξt dt )dx (G8)

is uniquely defined [6,45]. The differences stem from the way
to evaluate this quantity. In the description of nonreciprocal
systems [52], the steady-state heat is computed as a sum
of correlation between variables and velocities. In our case
of unidirectional coupling, this simplifies to a term ∼〈ηt ẋt 〉
which is the term we also obtain. Another definition is based
on the deviation from the fluctuation dissipation relation, the
Harada-Sasa relation [62] used in [6,56], which, similarly to
our calculations, gives a linear heat production in the steady
state.
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FIG. 19. Spectra of the white noise (blue line) and colored noise
(orange line). The vertical black lines are the limits imposed on the
calculation of the spectral entropy at 0.1 Hz and 104 Hz.

The difference of excess heat is given by the difference of
variance multiplied by κ/2, leading to

�QEX = Da

ω0

ωi − ω f

(ω0 + ωi )(ω0 + ω f )
, (G9)

where we used the notation ωi = ωc,initial and ω f = ωc,final.

APPENDIX H: SPECTRAL ENTROPY

The information content of the injected noise is measured
by the spectral entropy HS [29], which is precisely the Shan-
non entropy measured in the frequency domain. To evaluate
this quantity and its relation to heat, we perform a series of
measurement varying the correlation time of the noise τc while
keeping the other parameters constant, and test the robustness
of the result for different sets of parameter (stiffness and noise
intensity). For each experiment, an equivalent white noise
experiment is also performed, which allows us to extract an
effective temperature evaluated through equipartition: Teq =
κ〈x2〉/kB. We then compare QEX /kBTeq to HS . The evaluation
of HS is done on the normalized power spectral density of
the noise itself. In Fig. 19 we represent the normalized power
spectral densities (PSD) for white and colored noises gener-
ated at 20 kHz, along with the spectral boundaries used to get
rid of the nonphysical part of the signal (high-frequency noise
of the electronics).

On this PSD, the spectral entropy is then evaluated as

HS = −
N∑

i=1

P(ωi ) ln P(ωi ), (H1)

where P(ωi ) = Sη[ωi]/
∑

i Sη[ωi], and Sη[ωi] = 2|η[ωi]|2 de-
notes the PSD of the signal η[ω] at frequency ωi.

In the main text, we present the data from three different
experiments. The first one is set with κ = 33.2 pN/µm and a
pushing laser maximal power of 150 mW, leading to a white
noise effective temperature of 764.4 K. The second experi-
ment is performed with κ = 14.8 pN/µm, pushing laser power
19 mW, leading to Teq = 531.8 K. The third experiment is
done with κ = 21.4 pN/µm, pushing laser power 40 mW,
leading to Teq = 943.6 K. The strong influence of both the

FIG. 20. Normalized excess heat difference �QEX /kBTeq (trian-
gles) and spectral entropy difference �HS (circles) as a function of
the final inverse correlation time ω f for various noise amplitudes,
each characterized by an equipartition temperature measured in the
white noise case, ranging from 531.82 K to 1679.4 K, as indicated
in the inset. The black solid line corresponds to the analytical ex-
pression of the spectral entropy. The red patch corresponds to the
ensemble of excess heats, each characterized by a different Da which
is not trivially normalized by kBTeq as seen in Fig. 10 (left).

stiffness and noise intensity on effective temperature is clear.
This influence however does not break the central relation
shown in the main text between QEX and HS .

The spectral entropy can be computed analytically in the
case studied here of exponentially correlated noise. We define
a normalized pulsation � = ω/ωc, and write the normalized
spectrum as

P(�) = Sη[�]∫
Sη[�] d�

= 2

ωc

1

1 + �2
. (H2)

The continuous spectral entropy thus writes

HS = −ωc

∫
P(�) ln[P(�)] d�

= 2
∫

ln(1 + �2)

1 + �2
d� + ln(ωc/2)

∫
2

1 + �2
d�

= 4π ln 2 + ln(ωc/2), (H3)

where we recognize, for the first integral, the entropy of a
Cauchy distribution and, for the second integral, the unit vari-
ance of the normalized process. It leads to a simple expression

HS = ln ωc + C, (H4)

where C = (4π − 1) ln 2. Therefore the difference of spectral
entropy between two correlated bath writes as

�HS = − ln(ω f /ωi ). (H5)

In Fig. 20 we plot the experimental result for excess heat
(triangles) and spectral entropy (circles) along with the analyt-
ical results (H5) and (G9). The excess heat explicitly depends
on Da [as seen in Eq. (G9)] which itself depends on the
amplitude of the noise (each noise amplitude characterized by
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an effective temperature Teq will give another Da). Therefore,
the excess heat is not unique, but the various equipartition
temperatures Teq give a family of curves, represented here as a
shaded red area. The spectral entropy, in contrast is uniquely
defined for all effective temperatures (black solid line).

We can observe that, despite their very different mathemat-
ical expressions (one having a logarithmic profile, while the

other is a ratio of polynomials) both functions are very close
over a wide frequency bandwidth, making them experimen-
tally indistinguishable within our resolution. The simplicity
of the correlation between heat and information is experi-
mentally true within all our parameter ranges, including noise
correlation time and noise amplitude over all probed band-
widths.
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